中考压轴专题之二次函数与方程综合 姓名
1.(08天津市卷26题) 已知抛物线y3ax22bxc,
(Ⅰ)若ab1,c1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若ab1,且当1x1时,抛物线与x轴有且只有一个公共点,求c的取值范围;
(Ⅲ)若abc0,且x10时,对应的y10;x21时,对应的y20,试判断当0x1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(08天津市卷26题解析)解(Ⅰ)当ab1,c1时,抛物线为y3x22x1, 方程3x22x10的两个根为x11,x213. ∴该抛物线与x轴公共点的坐标是1,0和13,0. (Ⅱ)当ab1时,抛物线为y3x22xc,且与x轴有公共点.
对于方程3x22xc0,判别式412c≥0,有c≤13. ·························································· 3分
①当c13时,由方程3x22x130,解得x11x23.
此时抛物线为y3x22x13与x轴只有一个公共点13,0. ··················································· 4分 ②当c13时, x11时,y132c1c,x21时,y232c5c. 由已知1x1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x13,
应有y1≤0, 即1c≤0,5c0.解得5c≤1.
y20.综上,c13或5c≤1. ············································································································· 6分 (Ⅲ)对于二次函数y3ax22bxc,
由已知x10时,y1c0;x21时,y23a2bc0, 又abc0,∴3a2bc(abc)2ab2ab.
于是2ab0.而bac,∴2aac0,即ac0.∴ac0. 7分
∵关于x的一元二次方程3ax22bxc0的判别式4b212ac4(ac)212ac4[(ac)2ac]0,∴抛物线y3ax22bxc与x轴有两个公共点,顶点在x轴下方. ················································ 8分 又该抛物线的对称轴xb,y 3a 由abc0,c0,2ab0, 得2aba,
O 1 x
2分
1
1b2∴. 33a3又由已知x10时,y10;x21时,y20,观察图象,
可知在0x1范围内,该抛物线与x轴有两个公共点. ··································································· 10分 2. (08广东肇庆25题)(本小题满分10分)
已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y5x212x上. (1)求抛物线与x轴的交点坐标;(2)当a=1时,求△ABC的面积;
(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由. (08广东肇庆25题解析)(本小题满分10分) 解:(1)由5x212x=0,(1分)得x10,x21212.(2分)∴抛物线与x轴的交点坐标为(0,0)、(,0).55(4分)
·······························································(3分)(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),
分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有
SABC=S梯形ADFC -S梯形ADEB -S梯形BEFC =
(1781)2(1744)1(4481)1--=5(个单位面积)
222(3)如:y33(y2y1).事实上,y35(3a)212(3a) =45a2+36a. 3(y2y1)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a. ······························· (9分) ∴y33(y2y1). ·················································································································· (10分) 3.(08浙江杭州24) 在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平
移二次函数ytx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(∣OB∣<∣OC∣),连结A,B。 (1)是否存在这样的抛物线F,使得OA断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=
解析式。
(08浙江杭州24题解析)∵ 平移ytx2的图象得到的抛物线F的顶点为Q, ∴ 抛物线F对应的解析式为:yt(xt)2b. --- 2分 ∵ 抛物线与x轴有两个交点,∴tb0. --- 1分 令y0, 得OBt2OBOC?请你作出判
3,求抛物线F对应的二次函数的2b,OCttb, t 2
∴ |OB||OC||(tb)( ttbb22)||t2 |tOA , tt2即t2b, 所以当b2t3时, 存在抛物线F使得|OA|2|OB||OC|.-- 2分 tt(2) ∵AQ//BC, ∴ tb, 得F: yt(xt)2t,
解得x1t1,x2t1. --- 1分 在RtAOB中,
1) 当t0时,由 |OB||OC|, 得B(t1,0), 当t10时, 由tanABO32|OA||OB|tt1, 解得t3, 此时, 二次函数解析式为y3x218x24; --- 2分 当t10时, 由tanABO32|OA||OB|tt1, 解得t35, 此时,二次函数解析式为y3218485x +25x +
125. --- 2分 2) 当t0时, 由 |OB||OC|, 将t代t, 可得t35, t3,
(也可由x代x,y代y得到) 所以二次函数解析式为 y35x2 +1825x –48125或y3x218x24. --- 2分. 4、(08浙江丽水)24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线
x2与x轴相交于点B,连结OA,抛物线yx2从点O沿OA方向平移,
与直线x2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式; (2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标; ②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA
的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若 不存在,请说明理由.
(08浙江丽水24题解析)24.(本题14分)
解:(1)设OA所在直线的函数解析式为ykx,
∵A(2,4),
∴2k4, k2,
y A P M B O x2 x(第24题) 3
∴OA所在直线的函数解析式为y2x.…………………………………(3分) (2)①∵顶点M的横坐标为m,且在线段OA上移动,
2 ∴y2m(0≤m≤2).∴顶点M的坐标为(m,2m).∴抛物线函数解析式为y. (xm)2m2m2m4∴当x2时,y(0≤m≤2). (2m)2m22∴点P的坐标是(2,m).…………………………………(3分) 2m422② ∵PB=m=(, 又∵0≤m≤2, m1)32m4∴当m1时,PB最短. ……………………………………………(3分)
(3)当线段PB最短时,此时抛物线的解析式为y.……………(1分) x122假设在抛物线上存在点Q,使SSQMAPMA.
2 设点Q的坐标为(x,x). 2x3①当点Q落在直线OA的下方时,过P作直线PC//AO,交y轴于点C,
∵P,∴OC1,∴C点的坐标是(0,1). P1B4,∴AB3,A∵点P的坐标是(2,3),∴直线PC的函数解析式为y. 2x1∵S,∴点Q落在直线y上. S2x1QMAPMA2∴x=2x1. 2x3y A M D 2,x2解得x,即点Q(2,3). 12∴点Q与点P重合.
∴此时抛物线上不存在点Q,使△QMA与 △APM的面积相等.………………………(2分)
E O C P B x2 x ②当点Q落在直线OA的上方时,作点P关于点A的对称称点D,过D作直线DE//AO,交y轴于点E,
ODA1∵A,∴E,∴E、D的坐标分别是(0,1),(2,5), P1∴直线DE函数解析式为y. 2x12∵S,∴点Q落在直线y上.∴x=2x1. S2x32x1QMAPMA2.代入y2522. 2,x522,y解得:x,得yx122212122,5222,522,Q∴此时抛物线上存在点Q 2124
使△QMA与△PMA的面积相等. …………………………………(2分)
22,5222,522,Q综上所述,抛物线上存在点Q 212 使△QMA与△PMA的面积相等.
5、(2008山东烟台)如图,抛物线L1:yx22x3交x轴于A、B两点,交y轴于M点.抛物线L1向右平移2个单
位后得到抛物线L2,L2交x轴于C、D两点. (1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线L2上,请说明理由.
答案:
5
6、 (2008建设兵团)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的
一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
答案:解:(1)设抛物线的表达式为yax2 点B(6,5.6)在抛物线的图象上. ∴5.636a
a7 4572x 45∴抛物线的表达式为y(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t) 已知窗户高1.6m,∴t5.6(1.6)4
472k 45k1≈5.07,k2≈5.07(舍去)
∴CD5.072≈10.14(m) 又设最多可安装n扇窗户 ∴1.5n0.8(n1)≤10.14
n≤4.06.
答:最多可安装4扇窗户.(本题不要求学生画出4个表示窗户的小矩形)
6
197.(08江西南昌)24.如图,抛物线y1ax2ax1经过点P,,且与抛物线y2ax2ax1相交
28于A,B两点.(1)求a值;(2)设y1ax2ax1与x轴分别交于M,N两点(点M在点N的左边),,观察M,N,E,F四点的坐标,写出一条正确y2ax2ax1与x轴分别交于E,F两点(点E在点F的左边)的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,且xA≤x≤xB,过Q作一条垂直于x轴0),的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少? y 19(08江西南昌24题解析)24.解:(1)点P,在抛物线
28P A O B x y1ax2ax1上,
119aa1, ························································································································· 2分
428解得a1. ··············································································································································· 3分 21121121,抛物线y1xx1,y2xx1. ················ 5分 22222y P A M E O N F B x (2)由(1)知a121当xx10时,解得x12,x21.
22···················· 6分 点M在点N的左边,xM2,xN1. ·当
121xx10时,解得x31,x42. 22·············································································· 7分 点E在点F的左边,xE1,xF2. ·
xMxF0,xNxE0,
························································································ 8分 点M与点F对称,点N与点E对称. ·(3)a10. 2A y P C O Q D x B ····························· 9分 抛物线y1开口向下,抛物线y2开口向上. ·根据题意,得CDy1y2
1111······························································· 11分 x2x1x2x1x22. ·
2222·································································· 12分 xA≤x≤xB,当x0时,CD有最大值2. ·
7