华拓科技网
您的当前位置:首页Omnidirectional vision for Appearance-based Robot Localization

Omnidirectional vision for Appearance-based Robot Localization

来源:华拓科技网
OmnidirectionalVisionforAppearance-basedRobot

Localization

B.J.A.Kr¨ose,N.Vlassis,andR.Bunschoten

RealWorldComputingPartnership,NovelFunctionsLaboratorySNN,DepartmentofComputer

Science,UniversityofAmsterdam,

Kruislaan403,NL-1098SJAmsterdam,TheNetherlands

{krose,vlassis,bunschot}@science.uva.nl

Abstract.Mobilerobotsneedaninternalrepresentationoftheirenvironmenttodousefulthings.Usuallysucharepresentationissomesortofgeometricmodel.Forourrobot,whichisequippedwithapanoramicvisionsystem,wechooseanappearancemodelinwhichthesensoricdata(inourcasethepanoramicimages)havetobemodeledasafunctionoftherobotposition.Becauseimagesareveryhigh-dimensionalvectors,afeatureextractionisneededbeforethemodelingstep.VeryoftenalineardimensionreductionisusedwheretheprojectionmatrixisobtainedfromaPrincipalComponentAnalysis(PCA).PCAisoptimalforthereconstructionofthedata,butnotnecessarilythebestlinearprojectionforthelocalizationtask.Wederivedamethodwhichextractslinearfeaturesoptimalwithrespecttoariskmeasurereflectingthelocalizationperformance.WetestedthemethodonarealnavigationproblemandcompareditwithanapproachwherePCAfeatureswereused.

1Introduction

Aninternalmodeloftheenvironmentisneededtonavigateamobilerobotoptimallyfromacurrentstatetowardadesiredstate.Suchmodelscanbetopologicalmaps,basedonlabeledrepresentationsforobjectsandtheirspatialrelations,orgeometricmodelssuchaspolygonsoroccupancygridsinthetaskspaceoftherobot.

Awidevarietyofprobabilisticmethodshavebeendevelopedtoobtainarobustestimateofthelocationoftherobotgivenitssensoryinputsandtheenvironmentmodel.Thesemethodsgenerallyincorporatesomeobservationmodelwhichgivestheprobabilityofthesensormeasurementgiventhelocationoftherobotandtheparameterizedenvironmentmodel.Sometimesthisparametervectordescribesexplicitpropertiesoftheenvironment(suchaspositionsoflandmarks[8]oroccupancyvalues[4])butcanalsodescribeanimplicitrelationbetweenasensorpatternandalocation(suchasneuralnetworks[6],radialbasisfunctions[10]orlook-uptables[2]).

Ourrobotisequippedwithapanoramicvisionsystem.Weadopttheimplicitmodelapproach:wearenotgoingtoestimatetheparametersofsomesortofCADmodelbutwemodeltherelationbetweentheimagesandtherobotlocationdirectly(appearancemodeling).

Insection2wedescribehowthismodelisusedinaMarkovlocalizationprocedure.Thenwediscusstheproblemofmodelinginahighdimensionalimagespaceanddescribethestandardap-proachforlinearfeatureextractionbyPrincipalComponentAnalysis(PCA).Inordertoevaluatethemethodweneedacriterion,whichisdiscussedinsection5.Thecriterioncanalsobeusedtofindanalternativelinearprojection:thesupervisedprojection.Experimentsonrealrobotdataarepresentedinsections6and7wherewecomparethetwolinearprojectionmethods.

2Probabilisticappearance-basedrobotlocalization

Letxbeastochasticvector(e.g.,2-Dor3-D)denotingtherobotpositionintheworkspace.Similarto[1]weemployaformofMarkovlocalizationforourmobilerobot.Thismeansthatateachpointintimewehaveabeliefwheretherobotisindicatedbyaprobabilitydensityp(x).

Markovlocalizationrequirestwoprobabilisticmodelstomaintainagoodpositionestimate:amotionmodelandanobservationmodel.

Themotionmodeldescribestheeffectamotioncommandhasonthelocationoftherobotandcanberepresentedbyaconditionalprobabilitydensity

p(xt|u,xt−1)

(1)

whichdeterminesthedistributionofxt(thepositionoftherobotafterthemotioncommandu)iftheinitialrobotpositionisxt−1.

Theobservationmodeldescribestherelationbetweentheobservation,thelocationoftherobot,andtheparametersoftheenvironment.Inoursituationtherobottakesanomnidirectionalimagezatpositionx.Weconsiderthisasarealizationofastochasticvariablez.Theobservationmodelisnowgivenbytheconditionaldistribution

p(z|x;θ),

(2)

inwhichtheparametervectorθdescribesthedistributionandreflectstheunderlyingenvironmentmodel.

UsingtheBayes’rulewecangetanestimateofthepositionoftherobotafterobservingz:

p(x|z;θ)=󰀂p(z|x;θ)p(x)

.

p(z|x;θ)p(x)dx

(3)

Herep(x)givestheprobabilitythattherobotisatxbeforeobservingz.Notethatp(x)canbederivedusingtheoldinformationandthemotionmodelp(xt|u,xt−1)repeatedly.Ifbothmodelsareknownwecancombinethemanddecreasethemotionuncertaintybyobservingtheenvironmentagain.

Inthispaperwewillfocusontheobservationmodel(2).Inordertoestimatethismodelweneedadatasetconsistingofpositionsxandcorrespondingobservationsz1.Wearenowfacedwiththeproblemofmodelingdatainahigh-dimensionalspace,particularlysincethedimensionalityofz(inourcasetheomnidirectionalimages)ishigh.Thereforethedimensionalityofthesensordatahastobereduced.Herewerestrictourselvestolinearprojections,inwhichtheimagecanbedescribedasasetoflinearfeatures.WewillstartwithalinearprojectionobtainedfromaPrincipalComponentAnalyis(PCA),asisusuallydoneinappearancemodeling[5]

3PrincipalComponentAnalysis

LetusassumethatwehaveasetofNimages{zn},n=1,...,N.Theimagesarecollectedatrespective2-dimensionalrobotpositions{xn}.Eachimageconsistsofdpixelsandisconsideredasad-dimensionaldatavector.InaPrincipalComponentAnalysis(PCA)theeigenvectorsofthecovariancematrixofanimagesetarecomputedandusedasanorthogonalbasisforrepresentingindividualimages.Although,ingeneral,forperfectreconstructionalleigenvectorsarerequired,onlyafewaresufficientforvisualrecognition.Theseeigenvectorsconstitutetheq,(q¯.ThisensuresFirstwesubtractfromeachimagetheaverageimageovertheentireimageset,z

thattheeigenvectorwiththelargesteigenvaluerepresentsthedirectioninwhichthevariationinthesetofimagesismaximal.WenowstacktheNimagevectorstoformtherowsofanN×d

1

Inthispaperweassumewehaveasetofpositionsandcorrespondingobservations:ourmethodissupervised.Itisalsopossibletodoasimultaneouslocalizationandmapbuilding(SLAM).Inthiscasetheonlyavailabledataisastreamofdata{z(1),u(1),z(2),u(2),...,z(T),u(T)}inwhichuisthemotioncommandtotherobot.Usingamodelabouttheuncertaintyofthemotionoftherobotitispossibletoestimatetheparametersfromthesedata[8].

imagematrixZ.Thenumericallymostaccuratewaytocomputetheeigenvectorsfromtheimagesetisbytakingthesingularvaluedecomposition[7]Z=ULVToftheimagematrixZ,whereVisad×qorthonormalmatrixwithcolumnscorrespondingtotheqeigenvectorsviwithlargesteigenvaluesλiofthecovariancematrixofZ[3].

Theseeigenvectorsviarenowthelinearfeatures.Notethattheeigenvectorsarevectorsinthed-dimensionalspace,andcanbedepictedasimages:theeigenimages.TheelementsoftheN×qmatrixY=ZVaretheprojectionsoftheoriginald-dimensionalpointstothenewq-dimensionaleigenspaceandaretheq-dimensionalfeaturevalues.

4Observationmodel

Thelinearprojectiongivesusafeaturevectory,whichwewilluseforlocalization.TheMarkovlocalizationprocedure,aspresentedinSection2,isusedonthefeaturevectory:

p(x|y;θ)=󰀂p(y|x;θ)p(x)

,

p(y|x;θ)p(x)dx

(4)

wherethedenominatoristhemarginaldensityoverallpossiblex.Wenowhavetofindamethodtoestimatetheobservationmodelp(y|x;θ)fromadataset{xn,yn},n=1,...,N.

WeusedakerneldensityestimationorParzenestimator.InaParzenapproachthedensityfunctionisapproximatedbyasumofkernelfunctionsovertheNdatapointsfromthetrainingset.Notethatinastrictsensethisisnota‘parametric’techniqueinwhichtheparametersofsomepre-selectedmodelareestimatedfromthetrainingdata.Instead,thetrainingpointsthemselvesaswellasthechosenkernelwidthmaybeconsideredastheparametervectorθ.Wewritep(y|x;θ)as

p(y,x;θ)

(5)p(y|x;θ)=

p(x;θ)andrepresenteachofthesedistributionasasumofkernelfunctions:

N1󰀃

p(x,y;θ)=gy(y−yn)gx(x−xn)

Nn=1

N1󰀃

gx(x−xn).p(x;θ)=

Nn=1

(6)(7)

where

󰀅󰀆

1||y||2

gy(y)=exp−

2h2(2π)q/2hqand

󰀅󰀆

1||x||2

exp−gx(x)=

2πh22h2(8)

aretheq-andtwo-dimensionalGaussiankernel,respectively.Forsimplicityinourexperimentswe

usedthesamewidthhforthegxandgykernels.

5Featurerepresentation

Asismadeclearintheprevioussections,theperformanceofthelocalizationmethoddependsonthelinearprojection,thenumberofkernelsintheParzenmodel,andthekernelwidths.Firstwediscusstwomethodswithwhichthemodelcanbeevaluated.Thenwewilldescribehowalinearprojectioncanbefoundusingtheevaluation.

5.1Expectedlocalizationerror

Amodelevaluationcriterioncanbedefinedbytheaverageerrorbetweenthetrueandtheesti-matedposition.Suchariskfunctionforrobotlocalizationhasbeenproposedin[9].Supposethedifferencebetweenthetruepositionx∗oftherobotandthetheestimatedpositionbyxisdenotedbythelossfunctionL(x,x∗).Iftherobotobservesy∗,theexpectedlocalizationerrorε(x∗,y∗)is(usingBayes’rule)computedas

󰀄

∗∗

L(x,x∗)p(x|y∗)dxε(x,y)=󰀄x∗

∗p(y|x)p(x)=dx.(9)L(x,x)∗)p(yxToobtainthetotalriskfortheparticularmodel,theabovequantitymustbeaveragedoverall

possibleobservationsy∗obtainedfromx∗andallpossiblex∗togive

󰀄󰀄

ε(x∗,y∗)p(y∗,x∗)dy∗dx∗(10)RL=

x∗

y∗

Theempiricalriskiscomputedwhenestimatingthisfunctionfromthedata:

N󰀃1ˆL=Rε(xn,yn)Nn=1

N󰀁N

1󰀃l=1L(xl,xn)p(yn|xl)=.󰀁NNn=1p(y|x)nll=1

(11)

Thisriskpenalizespositionestimatesthatappearfarfromthetruepositionoftherobot.A

problemwiththisapproachisthatifatafewpositionsthereareverylargeerrors(forexampletwodistantlocationshavesimilarvisualfeaturesandmaybeconfused),theaverageerrorwillbeveryhigh.5.2

Measureofmultimodality

Analternativewayofevaluatingthelinearprojectionfromztoyistoconsidertheaveragedegreeofmodalityofp(x|y)[11].Theproposedmeasureisbasedonthesimpleobservationthat,foragivenobservationznwhichisprojectedtoyn,thedensityp(x|y=yn)willalwaysexhibitamodeonx=xn.Thus,anapproximatemeasureofmultimodalityistheKullback-Leiblerdistancebetweenp(x|y=yn)andaunimodaldensitysharplypeakedatx=xn,givingtheapproximateestimate−logp(xn|y=yn)plusaconstant.Averagingoverallpointsynwehavetominimizetherisk

N󰀃1ˆK=−logp(xn|y=yn)(12)R

Nn=1withp(x|y=yn)computedwithkernelsmoothingasin(5).Thisriskcanberegardedasthenegativeaveragelog-likelihoodofthedatagivenamodeldefinedbythekernelwidthsandthespecificprojectionmatrix.ThecomputationalcostsofthisisO(N2),incontrastwiththeO(N3)

ˆL.forR5.3

Supervisedprojection

Weusetheriskmeasuretofindalinearprojectiony=WTzalternativetothePCAprojection.

ˆKasafunctionoftheprojectionmatrixWallowstheminimiza-ThesmoothformoftheriskR

tionoftheformerwithnonlinearoptimization.Forconstrainedoptimizationwemustcompute

ˆKandthegradientoftheconstraintfunctionWTW−IqwithrespecttoW,thegradientofR

andthenplugtheseestimatesinaconstrainednonlinearoptimizationroutinetooptimizewith

ˆK.WefollowedanalternativeapproachwhichavoidstheuseofconstrainednonlinearrespecttoR

optimization.TheideaistoparameterizetheprojectionmatrixWbyaproductofGivens(Ja-cobi)rotationmatricesandthenoptimizewithrespecttotheangleparametersinvolvedineachmatrix(see[12]fordetails).SuchasupervisedprojectionmethodmustgivebetterresultsthananunsupervisedonelikePCA(seeexperimentsinthispaperand[11]).Inthenextsectionswewillexperimentallytestbothmethods.

6ExperimentsusingPCAfeatures

FirstwewanttoknowhowgoodthelocalizationiswhenusingPCAfeatures.Inparticularweinvestigatehowmanyfeaturesareneeded.6.1

Datasetsandpreprocessing

Wetestedourmethodsonrealimagedataobtainedfromarobotmovinginanofficeenvironment,ofwhichanoverviewisshowninfigure1.WemadeuseoftheMEMORABLErobotdatabase.ThisdatabaseisprovidedbyTsukubaResearchCenter,Japan,fortheRealWorldComputingPart-nershipandcontainsadatasetofabout8000robotpositionsandassociatedmeasurementsfromsonars,infraredsensorsandomni-directionalcameraimages.Themeasurementsinthedatabasewereobtainedbypositioningtherobot(aNomad200)onthegrid-pointsofavirtualgridwithdistancesbetweenthegrid-pointsof10cm.OneofthepropertiesoftheNomad200robotisthatitmovesaroundinitsenvironmentwhilethesensorheadmaintainsaconstantorientation.Becauseofthis,thestateoftherobotischaracterizedbythepositionxonly.

Fig.1.Theenvironmentfromwhichtheimagesweretaken.

Theomni-directionalimagingsystemconsistsofaverticallyorientedstandardcolorcameraandahyperbolicmirrormountedinfrontofthelens.Thisresultsinimagesasdepictedinfigure2.Usingthepropertiesofthemirrorwetransformedtheomni-directionalimagesto360degreespanoramicimages.Toreducethedimensionalitywesmoothedandsubsampledtheimagestoaresolutionof×256pixels(figure3).Asetof2000imageswasrandomlyselectedfromthetotalsettoderivetheeigenimagesandassociatedeigenvalues.Wefoundthatfor80%reconstructionerrorweneededabout90eigenvectors.However,wearenotinterestedinthereconstructionofimages,butintheuseofthelow-dimensionalrepresentationforrobotlocalization.

Fig.2.Typicalimagefromacamerawithahyperbolicmirror

Fig.3.Panoramaimagederivedwiththeomnidirectionalvisionsystem.

6.2Observationmodel

Insection4wedescribedthekernelestimatorasawaytorepresenttheobservationmodelp(y|x;θ).Insuchamethodusuallyalltrainingpointsareusedforthemodeling.Inourdatabasewehave8000pointswecanuse.Ifweusethiswholedatasetthismeansthatintheoperationalstageweshouldcalculatethedistancetoall8000pointsforthelocalization,which,eventhoughthedimensionsofxandyarelow,iscomputationallytooslow.Wearethereforeinterestedintakingonlyapartofthesepointsinthekerneldensityestimationmodel.Inthefollowingsectionsasetofabout300imageswasselectedasatrainingset.Theseimagesweretakenfromrobotpositionsonthegrid-pointsofavirtualgridwithdistancesbetweenthegrid-pointsof50cm.

AnotherissueinthekernelmethodisasensiblechoiceforthewidthoftheGaussiankernel.Theoptimalsizeofthekerneldependsontherealdistribution(whichwedonotknow),thenumberofkernelsandthedimensionalityoftheproblem.Whenmodelingp(x,y)foraone-dimensionalfeaturevectorywithourtrainingsetwefoundthath≈0.1maximizedthelikelihoodofanindependenttestset.Thetestsetconsistedof100images,randomlyselectedfromtheimagesinthedatabasenotdesignatedastrainingimages.Whenusingmorefeaturesforlocalization(ahigherdimensionalfeaturevectory)theoptimalsizeofthekernelwasfoundtobehigher.Weusedthesevaluesinourobservationmodel.6.3

Localization

InaMarkovlocalizationprocedure,aninitialpositionestimateisupdatedbythefeaturesofanewobservationusinganobservationmodel.Theinitialpositionestimateiscomputedusingthemotionmodel,andgivesaninformedpriorintheBayesrule.Sinceweareonlyinterestedintheperformanceoftheobservationmodel,weassumeaflatpriordistributionontheadmissiblepositionsx.

45403530p(x|y)p(x|y)10−1−2−3−1−0.500.511.5252015105022454035302520151050210−1−2−3−1−0.500.511.52a)x2−1.5x1b)x2−1.5x1Fig.4.Animageatposition(1.74,-0.96)istaken.Thefiguredepictstheprobabilitydistributionoverthelearnedlocations.a)Thefirsteigenvector(withthehighesteigenvalue)isusedasfeature.b)Thefirst5eigenvectorsareused.

InthecurrentexperimentswestudiedhowmanyoftheprincipalcomponentsareneededforgoodlocalizationInfigure4weseethedistributionp(x|y)foranimagewhichwastakenatposition(1.74,-0.96),fortwodifferentnumberoffeatures:fiveeigenimagesoroneeigenimage.Weobservethatthedistributionwhenusingasinglefeaturehasmultiplepeaks,indicatingmultiplehypothesesfortheposition.Thisissolvedifmorefeaturesaretakenintoaccount.Inbothsituationsthemaximumaposteriorivalueisclosetotherealrobotposition.Thisillustratesthatthemodelgivesagoodpredictionoftherobot’srealposition.Insomecasesweobservedamaximalvalueofthedistributionatanerroneouslocationiftoofewfeatureswereused.Soweneedsufficientfeaturesforcorrectlocalization.Theeffectofthenumberoffeaturesisdepictedinfigure5whereweplottedlocalizationriskfordifferentnumberoffeatures.Weseethatforthisdataset(300positions)theperformancelevelsoutafterabout10-15features.

loss−based risk2.521.5risk10.50024681012feature vector dimensionality14161820Fig.5.Performancefordifferentnumberfeatures

7ComparingPCAwithasupervisedprojection

WealsocomparedthelocalizationoftherobotwhenusingPCAfeaturesandwhenusingsupervisedprojectionfeatures.Hereweuseddatacollectedinourownlaboratory.TheNomadrobotfollowsapredefinedtrajectoryinourmobilerobotlabandtheadjoininghallasshowninFig.6.Thedatasetcontains104omnidirectionalimages(320×240pixels)capturedevery25centimetersalongtherobotpath.Eachimageistransformedtoapanoramicimage(×256)andthese104panoramicimagestogetherwiththerobotpositionsalongthetrajectoryconstitutethetrainingsetofouralgorithm.AtypicalpanoramicimageshotatthepositionAofthetrajectoryisshowninFig.7.

11000011B

1001A

1001C

Fig.6.Therobottrajectoryinourbuilding.

Fig.7.ApanoramicsnapshotfrompositionAintherobottrajectory.

Inordertoapplyoursupervisedprojectionmethod,wefirstspheredthepanoramicimage

data.Spheringisanormalizationtozero-meanandidentitycovariancematrixofthedata.ThisisalwayspossiblethroughPCA.Wekeptthefirst10dimensionsexplainingabout60%ofthetotalvariance.Therobotpositionswerenormalizedtozeromeanandunitvariance.Thenweappliedthesupervisedprojectionmethod(see[12]fordetailsofoptimization)projectingthesphereddatapointsfrom10-Dto2-D.

InFig.8weplottheresultingtwo-dimensionalprojectionsusing(a)PCA,and(b)oursuper-visedprojectionmethod.WeclearlyseetheadvantageoftheproposedmethodoverPCA.Theriskissmaller,whilefromtheshapeoftheprojectedmanifoldweseethattakingintoaccounttherobotpositionduringprojectioncansignificantlyimprovetheresultingfeatures:therearefewerself-intersectionsoftheprojectedmanifoldinourmethodthaninPCAwhich,inturn,meansbet-terrobotpositionestimationontheaverage(smallerrisk).In[11]wealsoshowthatlocalizationismoreaccuratewhenusingthesupervisedprojectionmethod.

2.52 21.51.5110.5C 0.50B 0B −0.5−0.5−1−1−1.5−1.5−2C −2−2−1.5−1−0.500.511.52−2.5−2.5−2−1.5−1−0.500.511.52(a)PCAprojection:RK=−0.69(b)supervisedprojection:RK=−0.82Fig.8.Projectionofthepanoramicimagedatafrom10-D.(a)Projectiononthefirsttwoprincipalcomponents.(b)SupervisedprojectionoptimizingtheriskRK.ThepartwiththedashedlinescorrespondstoprojectionsofthepanoramicimagescapturedbytherobotbetweenpositionsBandCofitstrajectory.

Finally,thetwofeaturevectors(directionsintheimagespaceonwhichtheoriginalimagesareprojected)thatcorrespondtotheabovetwosolutionsareshowninFig.9.InthePCAcasethesearethefamiliarfirsttwoeigenimagesofthepanoramicdatawhich,asisnormallyobservedintypicaldatasets,exhibitlowspatialfrequencies.WeseethattheproposedsupervisedprojectionmethodyieldsverydifferentfeaturevectorsthanPCA,namely,imageswithhigherspatialfrequenciesanddistinctlocalcharacteristics.

1steigenvector1stsupervisedfeaturevector

2ndeigenvector2ndsupervisedfeaturevector

Fig.9.ThefirsttwofeaturevectorsusingPCA(left)andoursupervisedprojectionmethod(right).

8Discussionandconclusions

Weshowedthatappearance-basedmethodsgivegoodresultsonlocalizingamobilerobot.IntheexperimentswiththePCAfeatures,theaverageexpectedlocalizationerrorfromourtestsetisabout40cmifaround15featuresareusedandtheenvironmentisrepresentedwith300trainingsamples.Notethatwestudiedtheworst-casescenario:therobothasnopriorinformationaboutitsposition(the‘kidnappedrobot’problem),andcombinedwithamotionmodelthelocalizationaccuracyshouldbebetter.Asecondobservationisthattheenvironmentcanberepresentedbyonlyasmallnumberofparameters.Forthe30015-dimensionalfeaturevectorsthestoragecapacityisalmostnegligibleandthelook-upcanbedoneveryfast.

Theexperimentswiththesupervisedprojectionshowedthatthismethodresultedinalowerrisk,andthereforeabetterexpectedlocalization.In[11]wedescribeanexperimentwhereweusedthefullMarkovproceduretolocalizetherobot.ThesupervisedprojectionmethodgavesignificantlybetterresultsthanthePCAfeatures.

Bothexperimentswerecarriedoutwithextensivedatasets,withwhichwewereabletogetgoodestimatesontheaccuracyofthemethod.However,thedatawereobtainedinastaticenvironment,withconstantlightingconditions.Ourcurrentresearchinthislinefocusesoninvestigatingwhichfeaturesaremostimportantifchangesintheilluminationwilltakeplace.

9Acknowledgment

WewouldliketothankthepeopleintheRealWorldComputingPartnershipconsortiumandtheTsukubaResearchCenterinJapanforprovidinguswiththeMEMORABLErobotdatabase.

References

1.W.Burgard,A.Cremers,D.Fox,G.Lakemeyer,D.H¨ahnel,D.Schulz,W.Steiner,Walter,andS.Thrun.Theinteractivemuseumtour-guiderobot.InA.P.Press,editor,ProceedingsoftheFifteenthNationalConferenceonArtificialIntelligence,1998.

2.J.L.Crowley,F.Wallner,andB.Schiele.Positionestimationusingprincipalcomponentsofrangedata.InProc.IEEEInt.Conf.onRoboticsandAutomation,Leuven,Belgium,May1998.3.I.Jolliffe.PrincipalComponentAnalysis.Springer-Verlag,NewYork,1986.

4.K.KonoligeandK.Chou.Markovlocalizationusingcorrelation.InProc.InternationalJointCon-ferenceonArtificialIntelligence,pages1154–1159.MorganKauffmann,1999.

5.H.MuraseandS.K.Nayar.Visuallearningandrecognitionof3-dobjectsfromappearance.Int.JrnlofComputerVision,14:5–24,1995.

6.S.Oore,G.E.Hinton,andG.Dudek.Amobilerobotthatlearnsitsplace.NeuralComputation,9:683–699,1997.

7.W.H.Press,S.A.Teukolsky,B.P.Flannery,andW.T.Vetterling.NumericalRecipesinC.CambridgeUniversityPress,2ndedition,1992.

8.S.Thrun,W.Burgard,andD.Fox.Aprobabilisticapproachtoconcurrentmappingandlocalizationformobilerobots.MachineLearning,31:29–53,1998.

9.S.Thrun.Bayesianlandmarklearningformobilerobotlocalization.MachineLearning,33(1),1998.10.N.VlassisandB.Kr¨ose.Robotenvironmentmodelingviaprincipalcomponentregression.InIROS’99,

Proceedingsof1999IEEE/RSJInternationalConferenceonIntelligentRobotsandSystems,pp677–682,1999.

11.N.Vlassis,R.Bunschoten,andB.Kr¨ose.Learningtask-relevantfeaturesfromrobotdata.InIEEE

InternationalConferenceonRoboticsandAutomation,Seoul,Korea,May2001.pp499–504,2001.12.N.Vlassis,Y.MotomuraandB.Kr¨ose.SupervisedDimensionReductionofIntrinsicallyLow-dimensionalData.NeuralComputation,toappear,2001.

因篇幅问题不能全部显示,请点此查看更多更全内容