华拓科技网
您的当前位置:首页分子印迹与固相萃取

分子印迹与固相萃取

来源:华拓科技网
Talanta84 (2011) 1124–1132

ContentslistsavailableatScienceDirect

Talanta

journalhomepage:www.elsevier.com/locate/talanta

Synthesisofsurfacemolecularlyimprintedpolymerandtheselectivesolidphaseextractionofimidazolefromitsstructuralanalogs

GuifenZhua,JingFana,∗,YanbuGaoa,XiaGaoa,b,JianjiWanga,∗

SchoolofChemistryandEnvironmentalScience,HenanKeyLaboratoryforEnvironmentalPollutionControl,KeyLaboratoryforYellowRiverandHuaiRiverWaterEnvironmentalandPollutionControl,MinistryofEducation,HenanNormalUniversity,Xinxiang,Henan453007,PRChinab

DepartmentofPublicHealth,XinxiangMedicalUniversity,Xinxiang,Henan453003,PRChina

a

articleinfoabstract

Asurfacemolecularlyimprintedpolymer(MIP)wassynthesizedbyusingimidazoleasthetemplateandmodifiedsilicaparticlesasthesupportmaterial.Thestaticadsorption,solidphaseextraction(SPE)andhigh-performanceliquidchromatography(HPLC)experimentswereperformedtoinvestigatetheadsorptionpropertiesandselectiverecognitioncharacteristicsofthepolymerforimidazoleanditsstructuralanalogs.ItwasshownthatthemaximumbindingcapacitiesofimidazoleontheMIPandthenon-imprintedpolymer(NIP)were312and169␮molg−1,respectively.Theadsorptionwasfastandtheadsorptionequilibriumwasachievedin30min.Thebindingprocesscouldbedescribedbypseudo-secondorderkinetics.Comparedwiththecorrespondingnon-imprintedpolymer,themolecularlyimprintedpolymerexhibitedmuchhigheradsorptionperformanceandselectivityforimidazole.Theselectiveseparationofimidazolefromamixtureof1-hexyl-3-methylimidazoliumbromide([C6mim][Br])and2,4-dichlorophenolcouldbeachievedontheMIP–SPEcolumn.Therecoveriesofimidazoleand[C6mim][Br]were97.6–102.7%and12.2–17.3%,respectively,but2,4-dichlorophenolcouldnotberetainedonthecolumn.Thesurfacemolecularlyimprintedpolymerpresentedheremayfindusefulapplicationasasolidphaseabsorbenttoseparatetraceimidazoleinenvironmentalwatersamples.Thismayalsoformthebasisforourresearchprogramonthepreparationandapplicationofalkyl-imidazoliumimprintedpolymers.

© 2011 Elsevier B.V. All rights reserved.

Articlehistory:

Received5November2010

Receivedinrevisedform1March2011Accepted8March2011

Available online 16 March 2011Keywords:Imidazole

MolecularlyimprintedpolymerSynthesis

Solidphaseextraction

1.Introduction

Inrecentyears,peopleareincreasinglyinterestedinusingionicliquids,especiallyalkyl-imidazoliumbasedionicliquids,forchem-icalsynthesis,biocatalytictransformation,electrochemicaldevicedesignandanalyticalandseparationprocess,mainlyduetotheir“green”characteristics[1,2].Ionicliquidshavenegligiblevaporpressureandarerarelyflammableorexplosive,suggestingthattheypresentnoairpollutionorenvironmentalriskinclosedpro-cesses.However,ithasbeenshownthatalkyl-imidazoliumbasedionicliquidsaretoxictomammalianzooblast[3,4],microorgan-ism[5,6]andamongothers.Theionicliquidsarejustastoxicasconventionalorganicsolvents,andsometimestwo-to-fourordersofmagnitudemoretoxicthantheorganicsolvents[7].Thetoxicismainlyascribedtothealkyl-imidazoliumcations.Therefore,thewideapplicationofionicliquidswouldinevitablyresultinthelossoftheionicliquidsintowaterecosystems,leadingtopollutionofwater,soilandecologicalenvironment.Accordingly,itisimportant

∗Correspondingauthors.Tel.:+863733325971;fax:+863733326336.E-mailaddress:fanjing@henannu.edu.cn(J.Fan).0039-9140/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.talanta.2011.03.015

toassaytracealkyl-imidazoliumbasedionicliquidsinenvironmen-talsamples.

Intraditionalanalysismethodsoforganiccompounds,HPLC[8],spectroscopy[9]andionchromatogram[10]etc.,areusefulforthesystemswithlittleinterfereandhightargetconcentration.How-ever,imidazoleringofcationsoftheionicliquidsisUVactive,andmanyorganicshavesimilarabsorbanceprofilesintheUV–visiblerangewithimidazolering.Thusthesignaloverlappingisaseriousproblemforthedirectdeterminationofalkyl-imidazoliumbasedionicliquids[11].Duetothischaracteristicofionicliquidsandcom-plexoftheenvironmentalsamples,itisdifficulttoassaythetargetcompoundsdirectlybyusingtraditionalanalysismethods.Conse-quently,theestablishmentofeffectivemethodstoseparateandassayalkyl-imidazoliumbasedionicliquidsincomplexmatrixesisveryimportant.

Molecularlyimprintingofsyntheticpolymerisanapproachinwhichfunctionalmonomerandcrosslinkerarecopolymerizedinthepresenceoftemplatemolecule.Removalofthetemplatemoleculefromtheobtainedpolymerbysimplesolventextrac-tionrevealsthecomplementarybindingsitesthatcanrecognizethetemplatemoleculefromtheirstructurallysimilarcompounds[12,13].Duetotheadvantagesofselectiveseparationofthesub-

G.Zhuetal./Talanta84 (2011) 1124–11321125

strates,molecularlyimprintedpolymer(MIP)hasbeendevelopedrapidlyinsamplespre-treatment,especiallyinthepre-treatmentofenvironmentalsamples.Manyconventionalsyntheticapproachestowardimprintedpolymerparticlesinvolvethesynthesisofanimprintedpolymermonolith[14].Themonoliththenhastobegroundandsievedtodeliverafractionofparticlesofdesiredsizefortheintendedapplication.Particlespreparedinthismanneraretypicallyirregularinshapeandsize,andthemasstransferisslow.InordertoovercometheseproblemsandimprovethepropertiesofMIP,differentmethodshavebeenexplored,includingemulsion[15],precipitation[16,17],suspensionandmultistepswellingpoly-merization[18],filmgraftimprinting[19]andsurfaceimprinting[20].Inthesepreparationmethods,surfaceimprintingtechniqueiswelcome.Thepolymerwithbindingsitessituatedatthesurfaceshowsmanyadvantagessuchashighselectivity,enhancedadsorp-tion,moreaccessiblesites,fastmasstransferandbindingkinetics.Inaddition,itisknownthattheimprintedpolymermaterialssyn-thesizedbysurfaceimprintingtechnologyexhibitcontrollablesize,regularshape,bettermechanismintensity,andgoodreuseper-formancecomparedtothetraditionalimprintingmaterials.Thus,thesurfacemolecularlyimprintingtechniquehasbeenthefocusofmoreandmoreresearches[21–25].However,tothebestofourknowledge,nomolecularlyimprintedpolymer,especiallysurfaceimprintedpolymer,hasbeenreportedfortheseparationanddeter-minationofalkyl-imidazoliumbasedionicliquidssofar.

Fortheabovereasons,weprepared,inthiswork,imidazolemolecularlyimprintedpolymerbythesurfaceimprintingtech-niqueusingmodifiedsilicaparticlesasthesupportmaterial.Itwasfoundthattherewereeffectiveimprintedsitesonthesurfaceoftheimprintedpolymer,andthepolymerhasbeenappliedassolid-phaseextractionmaterialfortheselectiveextractionofimidazolefromitsstructuralanalogs.Thisworkisexpectedtobethefirststepforthepreparationofalkyl-imidazoliumimprintedpolymers.

2.Experimental

2.1.Materialsandreagents

Silicaparticles(180–200␮mindiameter)andaminopropy-ltriethoxysilanewereobtainedfromQingdaoOceanChemicalFactory(Shandong,China)andLancsResearchChemicalsLtd.(NJ,USA),respectively.Acryloylchloride,methacrylicacidandethylenedimethacrylatewerepurchasedfromAcrosCom-pany(NJ,USA).Imidazole,methanol,acetonitrileandchloro-formwereobtainedfromTianjinKermelChemicalReagentCompany(Tianjin,China).1-Methylimidazoleandtheionicliquidsof1-butyl-3-methylimidazoliumchlorideand1-hexyl-3-methylimidazoliumbromidewerepurchasedfromHenanLihuaPharmaceuticalLtd.(Henan,China).Azobisisobutyronitrile,ben-zene,2,4-dichlorophenolandm-dihydroxybenzenewerefromBeijingChemicalReagentCompany(Beijing,China).Allthesechemicalswereofanalyticalreagentgradeexceptforazobi-sisobutyronitrilewhichwasofchemicalpuritygrade.MethanolandacetonitrileofchromatographicpuritywereobtainedfromZhengzhouGuodaChemicalReagentCompany(Henan,China).UltrapurewaterwaspreparedfromMilli-Qpurificationsystem(MilliPore,USA).

Azobisisobutyronitrilewasrecrystallizedfrommethanolandthendriedunderreducedpressurebeforeuse.Methacrylicacidandethylenedimethacrylateweredistilledbeforeuseinordertoremovethepolymerizationinhibitor.Chromatographicpurityreagentswerefilteredthrougha0.22␮mfilterpriortouse.UltrapurewaterwasusedintheHPLCanalysisanddeionizedwaterwasusedinotherexperiments.

2.2.Instruments

AT6UV-visspectrophotometer(Shanghai,China)andahigh-performanceliquidchromatography(Waters,USA)equippedwithareversed-phasecolumn(C18column,4.6mm×150mm),aC18pre-columnandaPDA2998ultraviolet–visibledetectorwereusedinthepresentwork.Infraredspectra(IR)inKBrwererecordedat4000–400cm−1byusingaPerkin-Elmer983infraredspec-trophotometer(Norwalk,USA).Thescanningelectronmicroscope(SEM)micrographsofthesorbentswereobtainedat20.0kVonaJSM-5610LVscanningelectronmicroscopy(JEOL,Japan).The1HNMRspectrawererecordedbyaAV-400spectrometer(Bruker,Germany).TheASAP2020surfaceareaandporesizeanalyzer(Micromeritics,USA)wasusedtomeasurethespecificsurfacearea,thetotalporevolumeandtheaverageporediametersofthemolec-ularlyimprintingpolymerandnon-imprintedpolymer.2.3.Preparationoftheimidazoleimprintedpolymer

Atwo-stepprocedurewasusedtopreparetheimidazoleimprintedpolymer.TheschematicexpressionforthesyntheticroutewasillustratedinFig.1.Inthefirststep,silicaparti-clesweremodifiedchemicallyasdescribedbelow.Inordertoincreasethecontentof–OH,silicaparticleswereactivatedbydippinginto6molL−1hydrochloricacidfor24h,thenfilteredandwashedrepeatedlywithdistilledwater.Suchtreatedsilicaparticlesweredriedat110◦Ctoconstantweight.Theactivatedsil-icaparticlesweremixedwithaminopropyltriethoxysilane(APTS)inanhydroustolueneinasealedflaskandthenrefluxedfor7h.Theresultingaminopropyltriethoxysilane–silica(APTS–silica)particleswereseparated,andwashedwithanhydroustoluene,ethanolandacetoneinsequence.Thenacryloylchloride(AC)andthecatalyst–triethylamineweremixedwithaminopropy-ltriethoxysilane–modifiedsilicaparticlesinanhydroustoluenesolution.Themixturewasvigorouslystirredfor12hatroomtemperatureunderdrynitrogen.Theproductwasseparatedbyfiltrationandthenwashedsuccessivelywithanhydroustoluene,methanol,ethanolandacetone.Finally,theobtainedacryloylchloride–aminopropyltriethoxysilane–silica(AC–APTS–silica)par-ticlesweredriedundervacuumat40◦Cbeforeuse.

Inthesecondstep,imidazoleimprintedpolymerwasprepared.Forthatpurpose,0.035gofimidazolewasdissolvedin50mLofchloroform,andthen1.0gofAC–APTS–silicaparticlesand0.18mLofmethacrylicacid(MAA)wereadded.Themixturewasshakenatroomtemperaturefor6hforpre-polymerization.Then1.mLofethylenedimethacrylate(EDMA)and0.010gofazobisisobutyroni-trilewereadded.Themixturewassonicated,anddegassedwithnitrogenfor10mintoeliminateoxygen,andthenwassealedforpolymerizationat60◦Cfor24hinaconstanttemperatureincubat-ingshakerwitharateof200rpm.Theresultantswereextractedwithamixedsolventofmethanol/aceticacid(9:1,v/v)for48hinaSoxhletextractortoremovethetemplate.Theobtainedparticleswerewashedwithmethanoltillneutralandthendriedtoconstantweightundervacuumat60◦C.Asacontrol,thenon-imprintedpolymerwaspreparedandtreatedunderthesameconditionsexceptfortheadditionofthetemplate.2.4.Staticadsorptiontests

20.0mgoftheMIPandNIPparticleswereadded,respectively,into2.0mLofacetonitrileinwhichimidazoleoritsstructuralanalogswerecontained.Themixtureswereallowedtostandfor12hatroomtemperaturetofacilitatetheadsorptionofimida-zoleoritsanalogsontotheMIPandNIPparticles.Afterthat,theconcentrationofthesubstratesinthesupernatantsolutionswas

1126G.Zhuetal./Talanta84 (2011) 1124–1132

SiO2APTSACSiO2ONHCC

(I)

HCCH+HCN

HN

OOH

O

OH

H

CCHN

NHCH

O

OH(II)

(I)+(II)

EDMA, AIBNPolymerizationSiO2ONHCC

O

OH

H

CCHN

NHCH

O

OH(III)

(III)

ExtractionRebindingSiO2ONHCC

O

OH

O

OH(IV)

Fig.1.Schematicillustrationforthesyntheticrouteofthemolecularlyimprintedpolymer.

determinedbyaUV-visspectrophotometer.Thebindingcapacityofimidazoleandtheanalogswascalculatedfromtheequation:Q=

(C0−C)V1000

M(1)

whereQstandsforthebindingcapacity(␮molg−1),C0andCaretheinitialandtheresidualconcentrations(mmolL−1)ofimidazoleortheanalogs,respectively,Visthesolutionvolume(mL),andMistheamount(mg)oftheMIPorNIPparticlesusedfortheadsorptionexperiments.

2.5.Solid-phaseextractionexperiments

Ahomemadeglasscolumn(4.5cm×3mmi.d.)packedwith100.0mgofMIPwasusedassolidphaseextraction(MIP–SPE)col-umn,inwhichasmallportionofglasswoolwaspackedinordertopreventlossofthesorbentduringsampleloading.AftertheMIP–SPEcolumnwaspre-treatedwithmethanolandacetonitrile,1mLofthesamplesolutioncontaining0.2mmolL−1imidazoleoreachofthestructuralanalogs(1-methylimidazole,metronidazoleorbenzene)inacetonitrilewaspassedthroughthecolumnataflowrateof0.5mLmin−1.Then,thecolumnwaswashedbymethanol,andelutedbyamixedsolventofmethanol/water(80:20,v/v).TheeluatewasanalyzedbytheHPLC.TheNIP–SPEcolumnwaspre-paredandtreatedinthesamewayexceptthatthestuffingwastheNIPparticles.

3.Resultsanddiscussion

3.1.InteractionbetweenimidazoleandthefunctionalmonomerTheprincipleofmolecularimprintingliesinthepreser-vationofthepre-polymerizedhost/gueststructureintoapolymermatrix.Thusitisimportantthatthetemplateandthefunctionalmonomercanformstablecomplexesthroughhydrogenbonding,ionicbondingorotherinteractionforcesinthepre-polymerizationmixture[26].Tounder-

standthemolecularrecognitionmechanism,theinteractionbetweentemplateandfunctionalmonomershouldbestud-ied.

Towardtothisend,UVabsorptionspectraofthetemplate(imi-dazole),functionalmonomer(methacrylicacid)andtheirmixtureinacetonitrileweredeterminedandtheresultwasshowninFig.2.Itcanbeseenthatatthewavelengthof215nm,theabsorbancevaluesofimidazoleandmethacrylicacidwere0.236and0.844,respectively.However,theabsorbanceoftheirmixturewas0.1,whichwasmuchlowerthanthesummationof0.236and0.844.Thisdifferencewasresultedfromtheinteractionsofimidazolewithmethacrylicacid.Duetothepre-polymerization,thecomplexofimidazolewithmethacrylicacidwasformedprobablythroughhydrogenbondingand/orionicbondingbetweenN–Hofimidazoleand–COOHofmethacrylicacid.

1.41.21.0

41Absorbance0.80.60.40.20.0-0.2

190200210220230240250260270Wavelength(nm)

Fig.2.UVabsorptionspectraofimidazoleinthepresenceofmethacrylicacidinacetonitrile:(1)imidazole(0.125mmolL−1);(2)methacrylicacid(0.5mmolL−1);(3)themixtureof1and2;(4)thesumofadsorptionvaluesfor1and2.

G.Zhuetal./Talanta84 (2011) 1124–1132

Table1

SomestructuralparametersforMIPandNIP.

Specificsurfaceareaa(m2g−1)

MIPNIP

1127

Totalporevolumeb(cm3g−1)0.290.39

Averageporediameterb(nm)5.225.74

206.04230.54

aMeasuredbyBrunauer–Emmett–Teller(BET)method.b

MeasuredbyBarrett–Joyner–Halenda(BJH)method.

Acomparisonof1HNMRspectraforimidazole,methacrylicacidandtheirmixturewasshowninFig.3.TheprotonofN-1andtheprotonofC-2ontheimidazoleringshifteddownfieldfrom12.101and7.6ppm(spectruma)to12.797and8.025ppm(spectrumc),respectively,inthepresenceofmethacrylicacid.Meanwhile,thedownfieldchemicalshiftofprotonofthecarboxylgroupwasfrom12.388ppm(spectrumb)to12.797ppm(spectrumc)duetotheinteractionbetweenimidazoleandmethacrlicacid.Allthesedatasuggestedtheformationofhydrogenbondingand/orionicbondingbetweenimidazoleandmethacrylicacid.3.2.CharacteristicsofMIPandNIP

ThemorphologyofMIPandNIPobservedfromSEMwasshowninFig.4.Itwasfoundthatshapeofthepolymerswasuniform,andthesizewasclosetothatofthesilicaparticles.Thepossiblereasonwasthatthepolymerizationreactionoccurredonthesurfaceofsilicaparticles,andthecoatingwasverythinsothattheshapeandsizeofsilicaparticlesandthepolymerswereverysimilar.ItwasalsofoundfromthemagnifiedSEMphotos(notshown)thatthemicro-poreonthesurfaceofNIPwaswell-distributedbuttheaverageporediameterwassmallerthanthatofMIP.ThismaybeascribedtotheelutionoftemplatemoleculesinthepreparationofMIP.Table1liststheresultsofnitrogenadsorptionexperimentsforMIPandNIPparticles.Itcanbeseenthatthespecificsurfacearea,thetotalporevolumeandtheaverageporediameterweredifferentforMIPandNIPparticles.ThesedatasupporttheobservationfromSEMphotos.

Fig.5showsIRspectraofthesilicagel-basedsamples.Obviously,APTS–silicadisplayedthecharacteristicpeaksofaminogroupsat1538cm−1,whileAC–APTS–silicaexhibitedtherelativelystrongbandofcarbonylgroupat1665cm−1.Thisobservationrevealsthatthetwo-stepchemicalmodificationwasachievedatthesurfaceofsilicaparticles.Inaddition,thebandataround2959cm−1wasassignedtothestretchingvibrationof–CH2–or–CH3,thebandat

Fig.3.1HNMRspectraofimidazole,methacrylicacidandtheirmixtureinDMSO:(a)imidazole(0.15molL−1);(b)methacrylicacid(0.60molL−1);(c)imidazole(0.15molL−1)+methacrylicacid(0.60molL−1).

1732cm−1wasassignedtotheabsorptionof–COOH,andthebandsat1233and1105cm−1wereascribedtothestretchingvibrationsofC–O–C.TheabsorptionpeaksofMIPandNIPparticlesweresimilar,whichmeansthatnotemplatemoleculeswereretainedontheMIP.3.3.Molarratiooptimizationofthetemplateandthefunctionalmonomer

Althoughthebindingcapacityisaneffectiveparameterfortheperformanceevaluationofthemolecularlyimprintedpolymer,theabilityofselectiveadsorptionismoreimportantfortheirappli-cation.Therefore,itwouldbeverysignificanttoinvestigatetheabilityofselectiverecognitionofthemolecularlyimprintedpoly-merforthetemplatemolecules.Forthispurpose,threedifferentmolarratiosofimidazoletomethacrylicacidwerestudiedinthepreparationofMIPandNIP.Thebindingcapacity(␮molg−1)ofimi-dazoleonthesepolymerswasdeterminedandusedtocalculatetheimprintingfactor[23]fromtheequation:ˇ=

QMIPQ(2)

NIP

Fig.4.SEMmicrographs:(a)silicaparticle;(b)MIP.

1128G.Zhuetal./Talanta84 (2011) 1124–1132

Fig.5.IRspectraofsilicagel-basedsamples:(1)puresilica;(2)APTS–silica;(3)AC–APTS–silica;(4)MIP;(5)NIP.

Here,ˇistheimprintingfactoroftheMIP,QMIPandQNIPstandforthebindingcapacityofimidazoleontheMIPandNIPmaterial.TheresultsweregiveninTable2.Itcanbeseenthatamongthethreemolarratiosofimidazoletomethacrylicacid,thebindingcapacityofthepolymerspreparedattheratioof1:6wasmaximum,whereasthatattheratioof1:2wasminimum.Thepossiblereasonwasthatthenon-specificbindingsitesincreasedwithincreasingproportionofmethacrylicacid,whichresultedintheincreaseoftheboundamountofimidazole.However,theimprintingfactor(2.29)ofthepolymerspreparedattheratioof1:4wasthehighest.Thissuggeststhatthecomplexofimidazolewithmethacrylicacidwasoptimal,andtheabilityofthepolymerforselectiveadsorptionofimidazolewasthestrongestatthismolarratio.Therefore,1:4ofimidazoletomethacrylicacidwaschosenastherightmolarratioforthepreparationofMIP.

3.4.BindingisothermsofimidazoleontheMIPandNIP

ThebindingisothermcurvesofimidazoleontheMIPandNIPwereplottedinFig.6.Itwasshownthatthebindingcapacityofthepolymersincreasedwithincreasinginitialconcentrationofimi-dazoleintherangeof1.0–10.0mmolL−1,andtheMIPhadhigheraffinityforimidazolethanNIP.Inthehigherconcentrationrange,thebindingcapacitywasclosetobestable.ThebindingdatacanbeanalyzedbyLangmuirequation:Q=

QmaxCeqB+Ceq

(3)

12010080

MIPNIPQ (umol g-1)60402000123456710C (mmol L-1)

Fig.6.AdsorptionisothermsofimidazoleonMIPandNIP.

whereQstandsforthebindingcapacity(␮molg−1),Qmaxisthemaximumbindingcapacity(␮molg−1),Ceqisequilibriumconcen-trationofimidazole(mmolL−1),andBisaconstant.InordertocalculatethemaximumbindingcapacityofimidazoleonbothMIPandNIP,thisequationwaschangedintoEq.(4):CeqCeqB

=+QQmaxQmax

(4)

Actually,Eq.(4)showsalinearrelationshipbetweenCeq/QandCeq.Fromtheslopeofthelinearplot,themaximumbindingcapac-Table2

Bindingcapacityandimprintingfactorforthemolecularlyimprintedpolymerspre-paredatdifferentmolarratiosoftemplatetofunctionalmonomer.ni/nma

1:21:41:6

a

ityofimidazoleontheMIPandNIPwascalculatedtobe312and169␮molg−1,respectively,indicatingthatthemaximumbind-ingcapacityofimidazoleonMIPwas1.84timesofthatonNIP.ThisdifferencesuggestedthatthespatialstructureofMIPandNIPmaterialswasdifferentthoughtheirchemicalcompositionwassimilar.Thereexistedcavitiesandspecificrebindingsitesforimi-dazoleontheMIPbecausethestructureoftemplate–monomercomplex,whichispossiblyresultedfromtheionicbondingorhydrogenbondingbetween–NHand–CH(2-position)intheimi-dazolemoleculesand–COOHinthefunctionmonomer,wasinaccordancewiththeshapeandstructureoftemplatemolecules.However,therewerenothese“memory”sitesinNIP,sothatitsbindingcapacitywaslower.Therefore,itisveryimportanttoformcavitiesandspecificrebindingsitesfortherecognitionofthetem-platemolecules.

Ingeneral,thelargeporevolumeresultsinthelargespecificsurfacearea,thisisadvantageousforthepolymertoadsorbthetemplatemolecules[27].ItwasfoundfromTable1thatthespecificsurfaceareaandaverageporevolumeofNIPwerelargerthanthoseofMIP,butthebindingcapacityofNIPwassmallerthanthatofMIP.ThisindicatesthatMIPhasstrongspecificadsorptionforimidazole.3.5.BindingkineticcurveofimidazoleontheMIP

InFig.7,theadsorptionkineticcurveofimidazoleonMIPwasshownattheimidazoleconcentrationof3.0mmolL−1inacetoni-trile.Itcanbeseenthatthebindingcapacityincreasedrapidlyininitial30min,andthenturnedtoaplateau.BecauseMIPwaspoly-

QMIP(␮molg−1)13.020.036.0

QNIP(␮molg−1)7.58.728.5

ˇ1.732.291.26

niandnmarethemolarnumberofimidazoleandmethacrylicacid,respectively.

G.Zhuetal./Talanta84 (2011) 1124–11321129

6050)1-g l40omu( Q302010020406080100120140160180200t (min)

Fig.7.AdsorptionkineticcurveofimidazoleonMIP.

merizedonthesurfaceofsilicaparticles,athinlayerofimprintedmaterialcontainingrecognitionsiteswasonlyonthesurface.Thetemplatecanbeextractedcompletelyfollowingthecreationoftheimprintsitesduringtheimprintingstep.Also,thetemplatemoleculescanreachtheimprintsiteseasilyandquicklyduringtherebindingstep[28].Therefore,MIPshowedgoodsiteaccessibilityforimidazoleandtheequilibriumwasachievedquickly.However,intheMIPsynthesizedbybulkpolymerization,therecognitionsiteswerenotonlyonthesurfacebutalsointheinsideofcrosslinkedpolymernetwork,andthemasstransferoftheobtainedmono-lithpolymerwasslowsothattheadsorptionequilibriumwouldbeachievedinalongperiodoftime.Thesefeaturesarenotwell-suitedfortheanalysisofrealsamples.Theimprintedpolymersynthesizedbysurfaceimprintingtechniqueovercamethesedrawbacks.

Forsolid/solutionsystems,thepseudo-firstorderkineticmodel(5)orthepseudo-secondorderkineticmodel(6):ln(Qe−Qt)=lnQe−kat(5)tt1Qt=Q+(6)

ekbQe2

canbeusedtodescribethebindingprocess[29].Intheseequations,KaandKbaretherateconstantsforthefirstordersorptionandthesecondordersorptionprocesses,respectively.Qtstandsforthebindingcapacity(␮molg−1)atgiventimet,andQeindicatestheequilibriumbindingcapacity(␮molg−1).Thepseudo-firstorderkineticmodelisthemostwidelyusedrateequationtodescribetheadsorptionofasolutefromliquidsolution.However,whenthepseudo-firstorderkineticmodelwasappliedtotheexperimentdata,nolinearrelationshipwasobserved,andthismodelhasbeenfoundtobeunsatisfactoryinprovidingaconcretemechanismfortheadsorptionprocessinanequallygoodnumberofcases[30,31].Inthepseudo-secondordermodel,thechemisorptionoftheadsor-bateontheadsorbentwasconsideredtobetherate-limitingstep,andthesolutemoleculesreactedwithtwokindsofadsorptionsites.Ifthepseudo-secondordermodelwasusedtotreattheexperimen-taldata,t/Qtversustyieldedalinearplot(y=0.109+0.01829x)withcorrelationcoefficientof0.9996.Thissuggeststhatthebind-ingprocesscanbedescribedbythepseudo-secondordermodel,andchemisorptionistherate-controllingstep[31].Itisthetwodifferenttypesoffunctionalgroupsofimidazolemoleculewhichformedtwokindsofcomplexeswithmethacrylicacid,leadingtotwokindsofbindingsitesforMIPinmolecularrecognitionprocess.3.6.Selectiveadsorption

Selectiveadsorptionexperimentswerecarriedoutinacetonitrilesolutioncontaining3.0mmolL−1imida-

CHH3NNNNimidazole

1-methylimidazole

benzene

Cl

OH

Cl

OHOH

2,4-dichlorophenol

m-dihydroxybenzene

CN

N

N

4H9

Cl

CH3C6HN13

Br

CH3[C4mim][Cl]

[C6mim][Br]

Fig.8.Structuresofimidazoleanditsanalogs.

zoleoraseriesofstructuralanalogs1-methylimidazole,benzene,2,4-dichlorophenol,m-dihydroxybenzene,1-butyl-3-methylimidazoliumchloride([C4mim][Cl])and1-hexyl-3-methylimidazoliumbromide([C6mim][Br])(theirmolecularstructuresareshowninFig.8),andthebindingcapacityofthesecompoundsontheMIPandNIPwasinves-tigatedbytheequilibriumbindingapproaches.Hereweuse󰀂Q(󰀂Q=QMIP−QNIP)astheparameterfortheevaluationofselectiveadsorptionofthepolymer[32].FromtheresultslistedinTable3,itisobviousthatthebindingcapacityofimidazoleand1-methylimidazoleontheMIPwasmuchhigherthanthatontheNIP,andthe󰀂Qvaluewasthemaximumforimidazoleexceptforbenzene.Thisresultsuggestedthatthecomplexesbetween–NHand–CH(2-position)intheimidazolemoleculesand–COOHinthefunctionmonomerwereformedbyionicbondingorhydrogenbonding.Intheprocedureofelution,thetemplatemoleculewaswashedout,andthecavitiesmatchedwiththetemplatemoleculesinshapeandsizewerethencreated,whichrecognizedthetemplatemoleculeseffectively.AlthoughthechemicalcompositionofMIPandNIPisthesame,thelatterpolymercanonlybindthetestedcompoundsbynon-specificadsorptionduetotheabsenceofpropercavitiesandrecognitionsitesinthispolymer.1-Methylimidazolehassimilarsizeandstructurewithimidazole,whichledtothehigherbindingcapacitythantheotherstructuralanalogs.However,thesizeof1-butyl-3-methylimidazolium([C4mim][Cl]),1-hexyl-3-methylimidazolium([C6mim][Br])andbenzenederivativeswasmuchlargerthanthatofimidazolethoughtherewere–CH(2-position)in[C4mim][Cl]and[C6mim][Br].Therefore,theirbindingcapacitywassmallerthanthatofimidazole.

Table3

BindingcapacityofdifferentsubstratesonMIPandNIP.Substrates

QMIP(␮molg−1)QNIP(␮molg−1)󰀂Q(␮molg−1)Imidazole

46.4621.7124.751-Methylimidazole17.732.5315.2Benzene

225.3572.90152.452,4-Dichlorophenol0.520.000.52m-Dihydroxybenzen4.212.162.05[C4mim][Cl]3.961.2.07[C6mim][Br]

5.05

2.83

2.22

1130G.Zhuetal./Talanta84 (2011) 1124–1132

Table4

Recoveriesofimidazole(IM),1-methylimidazole(1-ME),metronidazole(MET),andbenzene(BEN)fromMIPandNIPcolumns.a

MIPIM

Effluent(%)Firstwash(%)Secondwash(%)Thirdwash(%)Elution(%)

Totalrecovery(%)

a

NIP

1-ME1065.00017.592.5

MET72.38.70019.3100.3

BEN22.570.00010.0102.5

IM27.55.030.035.0097.5

1-ME7500032.5107.5

MET98.42.9003.8105.1

BEN45060.005.0110

015.00087.5102.5

Foreachwashingandelution,5mLofmethanoland5mLofmethanol/water(80:20,v/v)wereused,respectively.

Ontheotherhand,resultsinTable3indicatethatthebindingcapacityincreaseswithdecreasingpolarityofthecompounds.Forexample,thepolarityofbenzeneisthelowestamongthestructuralanalogs,butitsbindingcapacityisthehighest.Thissuggeststhatintherecognitionofbenzene,thenon-specificbindingwasthemainbindingmode.Fromtheseresults,itcanbeconcludedthatboththesizeofthetargetcompoundsandthenon-covalentinteractionswereveryimportantinthebindingprocess.3.7.Solid-phaseadsorptionbehaviorofthepolymers

3.7.1.Effectofflowrateanddesorptionsolvent

Inthesolid-phaseextractioncolumnexperiment,flowrateofsolutionandeluentwasanimportantparameteraffectingthebind-ingofIM.Inordertooptimizethisfactor,theinfluenceofflowrateonIMbindingwasstudiedintherangefrom0.2to2.0mLmin−1anddesorptionsolventwereexaminedbyabatchmodeexperi-ment.Forthispurpose,100.0mgofMIPwasmixedwithmethanolandpackedinaglasscolumn,and5mLofacetonitrilesolutioncontaining10␮gIMwasallowedtopassthroughthecolumn.Itwasshownthatabout100%ofIMwasboundbyMIPwhentheflowratewaslessthan1.2mLmin−1,buttheretentionofIMwasonly92.8%whentheflowratewasupto1.6mLmin−1.Itiswellknownthatwhentheflowrateistoofast,IMcannotsufficientlybeadsorbedbyMIPinthecolumn.Therefore,wechoose0.5mLmin−1asthebestflowrateinourexperiment.ThenIMretainedinthecol-umnwaselutedbymethanol,acetonitrileandamixedsolventofmethanol/water,respectively.Theresultsuggeststhatthemixedsolventofmethanol/water(80:20,v/v)wasthebestdesorptionsolvent.

3.7.2.SelectivityoftheMIP–SPEandNIP–SPEcolumns

Here,imidazole,imidazole-derivatives(1-methylimidazoleandmetronidazole)andbenzenewerechosentostudytheselectiveadsorptionbehavioroftheMIP–SPEandNIP–SPEcolumns.Afterloadingofsamplesolutions,theremainedconcentrationsofthecompoundsineffluentsandeluentsfromtheMIP–SPEandNIP–SPEcolumnsweredetermined,respectively.Theadsorptionandrecov-eryresultsweregiveninTable4.ItcanbeseenthatthebindingcapacitiesofthesamplesonMIP–SPEcolumnweremuchhigherthanthatonNIP–SPEcolumn,andthatimidazolecouldberetainedcompletelyontheMIP–SPEcolumn,while1-methylimidazole,metronidazoleandbenzenecouldberetainedonlyindifferentextentsonbothofthecolumns.Afterthreetimeswashing,mostoftheimidazole-derivativesandbenzenecouldbewashedofffromthecolumns,butmorethan87%ofimidazolewasstillboundontheMIP–SPEcolumn.ThisindicatesthattheMIPmaterialhasexcellentmolecularrecognitionabilityandhighselectivityforimidazole.Incontrast,theNIPmaterialhasnothisability,andtheinterac-tionbetweentargetsandthepolymerwasnon-specificaffinity.Inaddition,itwasobservedthatbenzenecouldbewashedofffromtheSPEcolumnseasilyaftertwotimeswashing.ThisillustratedagainthatthehighestbindingamountofbenzeneshowninTable3

wasresultedfromitsnon-specificaffinitytothepolymers.Con-sideringthefactthatamongthetestcompounds,thepolarityofbenzeneislowanditsinteractionwiththesolvent(acetonitrile)isweak,benzenewouldbeapttobindwiththesorbentbythenon-selectiveadsorptionduringtheequilibriumbindingprocess.TheseresultssuggestthatitispossibletoselectivelyenrichandseparateimidazolefromitsstructuralanalogsbyusingtheMIPmaterial.3.8.HPLCevaluationoftheselectiveseparation

InordertofurtherinvestigatedwhethertheMIP–SPEcolumncanbeusedfortheselectiveseparationandenrichmentofimi-dazolefromamixtureofitsstructuralanalogs,chromatographicexperimentwascarriedoutbypassing5.0mLofacetonitrilesolution,containing2.0mgL−1imidazole,2.0mgL−11-hexyl-3-methylimidazoliumbromide([C6mim][Br])and2.0mgL−12,4-dichlorophenol,throughthecolumnataflowrateof0.5mL·min−1,where[C6mim][Br]and2,4-dichlorophenolwereusedasinter-ferencespecies.Thenthecolumnwaselutedwith1mLofmethanol–watersolution(80:20,v/v),andtheanalyteintheelu-atewasanalyzedbytheHPLCwithaflowrateof0.5mLmin−1at30◦C.ThemobilephaseusedforHPLCexperimentwasamixtureofmethanolandwater(80:20,v/v),andtheUV–visdetectorwasoperatedat215nm.Thechromatogramsforthemixedsolutionofimidazole,1-hexyl-3-methylimidazoliumbromide([C6mim][Br])and2,4-dichlorophenolinacetonitrilewithandwithoutsolid-phaseextractiontreatmentbyMIPwereshowninFig.9.Inthisfigure,peaks1,2and3wereidentifiedas([C6mim][Br]),imidazoleand2,4-dichlorophenol,respectively.ComparedwiththesignalsshowninFig.9a,itcouldbefoundfromFig.9bthatimidazolecouldbeboundwell,but[C6mim][Br]and2,4-dichlorophenolwereboundpoorlyontheMIP–SPEcolumn.AfterelutionfromMIP–SPEcolumn,therecoveryis97.6–102.7%forimidazoleand12.2–17.3%for[C6mim][Br],but2,4-dichlorophenolintheeluatecouldnotbedeterminedbyHPLCundertheexperimentalconditions.Therefore,itisappropriatetostatethatMIPwouldbeusedasasolid-phasesorbenttoseparateandenrichimidazolefromcomplexmatrix.

OneoftheadvantagesofMIP–SPEsorbentsistheirreusabil-ity.InordertotestthisperformanceoftheMIP–SPEcolumn,themixedsolutioncontainingimidazole,[C6mim][Br]and2,4-dichlorophenolinacetonitrilewaspassedthroughtheMIP–SPEcolumnattherateof0.5mLmin−1,andtheconcentrationofimi-dazoleinthemixturewaskeptat0.2mmolL−1.Afterelutionbyamixedsolventofmethanol–water(80:20,v/v),theeluatewasana-lyzedbyHPLC.Theresultshowedthattherecoveryofimidazolewashigherthan94%,andnosignificantdecreaseinselectivityhadbeenobservedafterfiftytimesofreuseoftheMIP–SPEcolumn.3.9.Applicationtoenvironmentalwatersamples

TodemonstratetheabilityofMIPtoextractIMfromrealsam-ples,thetraceofIMinlakewater,groundwaterandtapwaterweredeterminedundertheoptimizedconditionsbycouplingMIP–SPE

G.Zhuetal./Talanta84 (2011) 1124–11321131

Fig.9.Chromatogramsforamixtureofimidazole,[C6mim][Br]and2,4-dichlorophenol:(a)mixturewithoutextractionbytheMIP–SPEcolumn;(b)eluateofthemixturefromtheMIP–SPEcolumn.ChromatographicconditionsofC18reversed-phasecolumn:detectionwavelength,215nm;mobilephase,methanol–water(80:20,v/v);flowrate,0.5mLmin−1;columntemperature,30◦C.

Table5

DeterminationofimidazoleafterMIP–SPEcolumninrealwatersamples(n=3).SamplesLakewaterLakewaterLakewaterGroundwaterGroundwaterGroundwaterTapwaterTapwaterTapwater

Add(mgL−1)

–0.301.00–0.301.00–0.301.00

Detected(mgL−1)–0.290.99–0.290.94–0.301.00

Recovery(%)–96.799.0–96.794.0–100.0100.0

R.S.D.(%)–4.33.6–3.32.9–5.31.0

andHPLC.Inthepracticalwatersamples,thelakewaterwassam-pledfromMuyeLakeinXinxiang,thetapwaterwastakenfromourlaboratory,andthegroundwaterfromXinxiangCity.Thewatersampleswerefilteredtoeliminatethesolidimpurity,andasuitableamountofwatersamplewaspassedthroughtheMIP–SPEcolumn.TheeluentwascollectedandthecontentofIMintheeluentwasdetermined.ItcanbeseenfromTable5thatnoIMwasdetectedinthesamplesoflakewater,groundwaterandtapwater.When0.3and1.0mgL−1ofIMwereadded,therecoveriesofIMwerefoundtobeintherangefrom94.0to100.0%forthethreewatersam-ples.TheseresultsconfirmedthattheMIPpreparedinthepresentworkcouldbeeffectivelyappliedforthedeterminationofIMinrealsamples.4.Conclusions

Inthiswork,wepreparedanewmolecularlyimprintedpoly-merbysurfacepolymerizationwithimidazoleasthetemplateandsilicaparticlesasthesupportmatrix.Thestructuralandadsorp-

tioncharacteristicsofthispolymerhavebeenstudied.Fromourexperimentalresults,thefollowingconclusionshavebeendrawn:(i)theshapeandsizeofthemolecularlyimprintedpolymerweresimilartothatofthesilicaparticles,andtheimprintingfactorwasthehighestfortheimprintedpolymerpreparedatthemolarratioof1:4ofthetemplatetothefunctionalmonomer;(ii)theMIPhasstrongabilityofselectiverecognitionandspecificadsorptionforimidazole,andcanbeusedasanexcellentsolid-phasesorbenttoseparateandenrichimidazolefromitsstructuralanalogs,sug-gestingthatthecavitiesandspecificrebindingsitesonthesurfaceoftheimprintedpolymerplayanimportantroleintherecogni-tionprocessofsubstrates;(iii)theadsorptionwasfastandtheadsorptionequilibriumwasachievedin30min,andthebindingprocesscouldbedescribedbypseudo-secondorderkinetics;(iv)thepolymercanbereusedwithoutsignificantdecreaseinselec-tivity.Tothebestofourknowledge,thisisthefirstreportonthemolecularlyimprintedpolymerfortheseparationandenrich-mentofimidazole.Theinformationobtainedhereisimportantforthesolidphaseextractionanddeterminationoftraceimidazole

1132G.Zhuetal./Talanta84 (2011) 1124–1132

inenvironmentalwatersamples.Also,thismaylaythebasisforthepreparationofalkyl-imidazoliumimprintedpolymersusedfortheseparationanddeterminationofalkyl-imidazoliumbasedionicliquids.

Acknowledgments

ThisworkwassupportedfinanciallybytheNationalNaturalScienceFoundationofChina(Grantno.20977025)andtheDoc-toralFoundationofMinistryofEducationofChina(Grantno.200804760004).References

[1]Y.C.Pei,J.J.Wang,X.P.Xuan,J.Fan,M.H.Fan,Environ.Sci.Technol.41(2007)

5090–5095.

[2]X.W.Chen,Y.P.Ji,J.H.Wang,Analyst135(2010)2241–2248.

[3]J.Ranke,K.Molter,F.Stock,U.Bottin-Weber,J.Poczobutt,J.Hoffmann,B.

Ondruschka,J.Filser,B.Jastorffa,Ecotoxicol.Environ.Saf.58(2004)396–404.[4]P.Stepnowski,A.C.Skladanowski,A.Ludwiczak,E.Laczynska,Hum.Exp.Toxi-col.23(2004)513–517.

[5]D.J.Couling,R.J.Bernot,K.M.Docherty,J.K.Dixon,E.J.Maginn,GreenChem.8

(2006)82–90.

[6]M.Matsumoto,K.Mochiduki,K.Kondo,J.Biosci.Bioeng.98(2004)344–347.[7]C.W.Cho,Y.C.Jeon,T.P.T.Pham,K.Vijayaraghavan,Y.S.Yun,Ecotoxicol.Environ.

Saf.71(2008)166–171.

[8]N.Zhang,C.Lu,J.G.Li,Q.Q.Li,Talanta81(2010)698–702.

[9]I.Billard,G.Moutiers,A.Labet,A.E.Azzi,C.Gaillard,C.Mariet,K.Lutzenkirchen,

Inorg.Chem.42(2003)1726–1733.

[10]X.H.Li,H.L.Duan,J.T.Pan,Chin.J.Anal.Chem.34(2006)192–194.

[11]J.S.Torrecilla,E.Rojo,J.Garca,F.Rodrguez,Ind.Eng.Chem.Res.47(2008)

4025–4028.

[12]M.Javanbakht,M.H.Namjumanesh,B.Akbari-adergani,Talanta80(2009)

133–138.

[13]X.W.Kan,Q.Zhao,Z.Zhang,Z.L.Wang,J.J.Zhu,Talanta75(2008)22–26.

[14]A.Beltran,R.M.Marce,P.A.G.Cormack,F.Borrull,J.Chromatogr.A1216(2009)

2248–2253.

[15]S.R.Carter,S.Rimmer,Adv.Funct.Mater.14(2004)553–561.[16]L.Ye,I.Surugiu,K.Haupt,Anal.Chem.74(2002)959–9.

[17]N.Sai,Y.P.Chen,N.Liu,G.G.Yu,P.Su,Y.Feng,Z.J.Zhou,X.Y.Liu,H.Y.Zhou,Z.X.

Gao,B.A.Ning,Talanta82(2010)1113–1121.

[18]Y.Watabe,T.Kubo,T.Nishikawa,T.Fujita,K.Kaya,K.Hosoya,J.Chromatogr.A

1120(2006)252–259.

[19]T.Piacham,A.Josell,H.Arwin,V.Prachayasittikul,L.Ye,Anal.Chim.Acta536

(2005)191–196.

[20]W.Luo,L.H.Zhu,C.Yu,H.Q.Tang,H.X.Yu,X.Li,X.Zhang,Anal.Chim.Acta618

(2008)147–156.

[21]R.Z.Ouyang,J.P.Lei,H.X.Ju,Chem.Commun.(2008)5761–5763.

[22]L.Qin,X.W.He,W.Zhang,W.Y.Li,Y.K.Zhang,J.Chromatogr.A1216(2009)

807–814.

[23]H.M.Liu,C.H.Liu,X.J.Yang,S.J.Zeng,Y.Q.Xiong,W.J.Xu,Anal.Chim.Acta628

(2008)87–94.

[24]C.Tan,S.Wangrangsimakul,R.Bai,Y.W.Tong,Chem.Mater.20(2008)

118–127.

[25]D.M.Gao,Z.P.Zhang,M.H.Wu,C.G.Xie,G.J.Guan,D.P.Wang,J.Am.Chem.Soc.

129(2007)7859–7866.

[26]J.Fan,Y.F.Wei,J.J.Wang,C.L.Wu,H.L.Shi,Anal.Chim.Acta639(2009)42–50.[27]S.G.Hu,L.Li,X.W.He,Anal.Chim.Acta639(2009)42–50.

[28]C.H.Lu,W.H.Zhou,B.Han,H.H.Yang,X.Chen,X.R.Wang,Anal.Chem.79(2007)

5457–5461.

[29]W.Rudzinski,W.Plazinski,J.Phys.Chem.B110(2006)16514–16525.[30]Y.S.Hoa,G.McKay,FellowTrans.IchemeE76B(1998)332–340.[31]Y.S.Hoa,G.McKay,FellowTrans.IchemeE77B(1999)165–173.

[32]X.Feas,J.A.Seijas,M.P.Vazquez-Tato,P.Regal,A.Cepeda,C.Fente,Anal.Chim.

Acta631(2009)237–244.

因篇幅问题不能全部显示,请点此查看更多更全内容