⼀、构建路线
个⼈感觉对于任何⼀个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上我都采⽤同样的⼀个学习流程,⼤体流程如下:(1)训练阶段:数据打包-》⽹络构建、训练-》模型保存-》可视化查看损失函数、验证精度(2)测试阶段:模型加载-》测试图⽚读取-》预测显⽰结果(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线
这边我就以tensorflow为例⼦,讲解整个流程的⼤体架构,完成⼀个深度学习项⽬所需要熟悉的过程代码。⼆、训练、测试阶段1、tensorflow打包数据
这⼀步对于tensorflow来说,也可以直接⾃⼰在线读取:.jpg图⽚、标签⽂件等,然后通过phaceholder变量,把数据送⼊⽹络中,进⾏计算。
不过这种效率⽐较低,对于⼤规模训练数据来说,我们需要⼀个⽐较⾼效的⽅式,tensorflow建议我们采⽤tfrecoder进⾏⾼效数据读取。学习tensorflow⼀定要学会tfrecoder⽂件写⼊、读取,具体⽰例代码如下:
1.
#coding=utf-82.
#tensorflow⾼效数据读取训练3.
import tensorflow as tf4.
import cv25. 6.
#把train.txt⽂件格式,每⼀⾏:图⽚路径名 类别标签7.
#奖数据打包,转换成tfrecords格式,以便后续⾼效读取8.
def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None):9.
writer=tf.python_io.TFRecordWriter(data_root+'/'+new_name)10.
num_example=011.
with open(lable_file,'r') as f:12.
for l in f.readlines():13.
l=l.split()14.
image=cv2.imread(data_root+\"/\"+l[0])15.
if resize is not None:16.
image=cv2.resize(image,resize)#为了17.
height,width,nchannel=image.shape18.
19.
label=int(l[1])20.
21.
example=tf.train.Example(features=tf.train.Features(feature={22.
'height':tf.train.Feature(int_list=tf.train.IntList(value=[height])),23.
'width':tf.train.Feature(int_list=tf.train.IntList(value=[width])),24.
'nchannel':tf.train.Feature(int_list=tf.train.IntList(value=[nchannel])),25.
'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),26.
'label':tf.train.Feature(int_list=tf.train.IntList(value=[label]))27.
}))28.
serialized=example.SerializeToString()29.
writer.write(serialized)30.
num_example+=131.
print lable_file,\"样本数据量:\32.
writer.close()33.
#读取tfrecords⽂件34.
def decode_from_tfrecords(filename,num_epoch=None):35.
filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞⼤,被分成了很多个⽂件,所以第⼀个参数就是⽂件列表名参数36.
reader=tf.TFRecordReader()37.
_,serialized=reader.read(filename_queue)38.
example=tf.parse_single_example(serialized,features={39.
'height':tf.FixedLenFeature([],tf.int),40.
'width':tf.FixedLenFeature([],tf.int),41.
'nchannel':tf.FixedLenFeature([],tf.int),42.
'image':tf.FixedLenFeature([],tf.string),43.
'label':tf.FixedLenFeature([],tf.int)44.
})45.
label=tf.cast(example['label'], tf.int32)46.
image=tf.decode_raw(example['image'],tf.uint8)47.
image=tf.reshape(image,tf.pack([48.
tf.cast(example['height'], tf.int32),49.
tf.cast(example['width'], tf.int32),50.
tf.cast(example['nchannel'], tf.int32)]))51.
#label=example['label']52.
return image,label53.
#根据队列流数据格式,解压出⼀张图⽚后,输⼊⼀张图⽚,对其做预处理、及样本随机扩充54.
def get_batch(image, label, batch_size,crop_size):55.
#数据扩充变换
56.
distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪57.
distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转58.
#distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化59.
#distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对⽐度变化60.
61.
#⽣成batch62.
#shuffle_batch的参数:capacity⽤于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够⼤63.
#保证数据打的⾜够乱.
images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,65.
num_threads=16,capacity=50000,min_after_dequeue=10000)66.
#images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)67.
68.
69.
70.
# 调试显⽰71.
#tf.image_summary('images', images)72.
return images, tf.reshape(label_batch, [batch_size])73.
#这个是⽤于测试阶段,使⽤的get_batch函数74.
def get_test_batch(image, label, batch_size,crop_size):75.
#数据扩充变换76.
distorted_image=tf.image.central_crop(image,39./45.)77.
distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪78.
images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)79.
return images, tf.reshape(label_batch, [batch_size])80.
#测试上⾯的压缩、解压代码81.
def test():82.
encode_to_tfrecords(\"data/train.txt\83.
image,label=decode_from_tfrecords('data/data.tfrecords')84.
batch_image,batch_label=get_batch(image,label,3)#batch ⽣成测试85.
init=tf.initialize_all_variables()86.
with tf.Session() as session:87.
session.run(init)88.
coord = tf.train.Coordinator().
threads = tf.train.start_queue_runners(coord=coord)
90.
for l in range(100000):#每run⼀次,就会指向下⼀个样本,⼀直循环91.
#image_np,label_np=session.run([image,label])#每调⽤run⼀次,那么92.
'''cv2.imshow(\"temp\93.
cv2.waitKey()'''94.
#print label_np95.
#print image_np.shape96.
97.
98.
batch_image_np,batch_label_np=session.run([batch_image,batch_label])99.
print batch_image_np.shape100.
print batch_label_np.shape101.
102.
103.
104.
coord.request_stop()#queue需要关闭,否则报错105.
coord.join(threads)106.
#test()
2、⽹络架构与训练
经过上⾯的数据格式处理,接着我们只要写⼀写⽹络结构、⽹络优化⽅法,把数据搞进⽹络中就可以了,具体⽰例代码如下:
1.
#coding=utf-82.
import tensorflow as tf3.
from data_encoder_decoeder import encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch4.
import cv25.
import os6. 7.
class network(object):8.
def __init__(self):9.
with tf.variable_scope(\"weights\"):10.
self.weights={11.
#39*39*3->36*36*20->18*18*2012.
'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()),13.
#18*18*20->16*16*40->8*8*40
14.
'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()),15.
#8*8*40->6*6*60->3*3*6016.
'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()),17.
#3*3*60->12018.
'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()),19.
#120->620.
'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()),21.
}22.
with tf.variable_scope(\"biases\"):23.
self.biases={24.
'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),25.
'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),26.
'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),27.
'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),28.
'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))29.
30.
}31.
32.
def inference(self,images):33.
# 向量转为矩阵34.
images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]35.
images=(tf.cast(images,tf.float32)/255.-0.5)*2#归⼀化处理36.
37.
38.
39.
#第⼀层40.
conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),41.
self.biases['conv1'])42.
43.
relu1= tf.nn.relu(conv1)44.
pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')45.
46.
47.
#第⼆层
48.
conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),49.
self.biases['conv2'])50.
relu2= tf.nn.relu(conv2)51.
pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')52.
53.
54.
# 第三层55.
conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),56.
self.biases['conv3'])57.
relu3= tf.nn.relu(conv3)58.
pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')59.
60.
61.
# 全连接层1,先把特征图转为向量62.
flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])63.
.
drop1=tf.nn.dropout(flatten,0.5)65.
fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1']66.
67.
fc_relu1=tf.nn.relu(fc1)68.
69.
fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']70.
71.
return fc272.
def inference_test(self,images):73.
# 向量转为矩阵74.
images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]75.
images=(tf.cast(images,tf.float32)/255.-0.5)*2#归⼀化处理76.
77.
78.
79.
#第⼀层80.
conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),81.
self.biases['conv1'])
82.
83.
relu1= tf.nn.relu(conv1)84.
pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')85.
86.
87.
#第⼆层88.
conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),.
self.biases['conv2'])90.
relu2= tf.nn.relu(conv2)91.
pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')92.
93.
94.
# 第三层95.
conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),96.
self.biases['conv3'])97.
relu3= tf.nn.relu(conv3)98.
pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')99.
100.
101.
# 全连接层1,先把特征图转为向量102.
flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])103.
104.
fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1']105.
fc_relu1=tf.nn.relu(fc1)106.
107.
fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']108.
109.
return fc2110.
111.
#计算softmax交叉熵损失函数112.
def sorfmax_loss(self,predicts,labels):113.
predicts=tf.nn.softmax(predicts)114.
labels=tf.one_hot(labels,self.weights['fc2'].get_shape().as_list()[1])115.
loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)
116.
self.cost= loss117.
return self.cost118.
#梯度下降119.
def optimer(self,loss,lr=0.001):120.
train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)121.
122.
return train_optimizer123.
124.
125.
def train():126.
encode_to_tfrecords(\"data/train.txt\127.
image,label=decode_from_tfrecords('data/train.tfrecords')128.
batch_image,batch_label=get_batch(image,label,batch_size=50,crop_size=39)#batch ⽣成测试129.
130.
131.
132.
133.
134.
135.
136.
#⽹络链接,训练所⽤137.
net=network()138.
inf=net.inference(batch_image)139.
loss=net.sorfmax_loss(inf,batch_label)140.
opti=net.optimer(loss)141.
142.
143.
#验证集所⽤144.
encode_to_tfrecords(\"data/val.txt\145.
test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None)146.
test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch ⽣成测试147.
test_inf=net.inference_test(test_images)148.
correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels)149.
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
150.
151.
152.
153.
154.
155.
init=tf.initialize_all_variables()156.
with tf.Session() as session:157.
session.run(init)158.
coord = tf.train.Coordinator()159.
threads = tf.train.start_queue_runners(coord=coord)160.
max_iter=100000161.
iter=0162.
if os.path.exists(os.path.join(\"model\163.
tf.train.Saver(max_to_keep=None).restore(session, os.path.join(\"model\1.
while iter #print image_np.shape167. #cv2.imshow(str(label_np[0]),image_np[0])168. #print label_np[0]169. #cv2.waitKey()170. #print label_np171. if iter%50==0:172. print 'trainloss:',loss_np173. if iter%500==0:174. accuracy_np=session.run([accuracy])175. print '***************test accruacy:',accuracy_np,'*******************'176. tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt'))177. iter+=1178. 179. 180. 181. 182. 183. coord.request_stop()#queue需要关闭,否则报错 184. coord.join(threads)185. 186. train() 3、可视化显⽰ (1)⾸先再源码中加⼊需要跟踪的变量: tf.scalar_summary(\"cost_function\损失函数值 (2)然后定义执⾏操作: merged_summary_op = tf.merge_all_summaries() (3)再session中定义保存路径: summary_writer = tf.train.SummaryWriter('log', session.graph) (4)然后再session执⾏的时候,保存: 1. summary_str,loss_np,_=session.run([merged_summary_op,loss,opti])2. summary_writer.add_summary(summary_str, iter)(5)最后只要训练完毕后,直接再终端输⼊命令: python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log 然后打开浏览器⽹址: http://0.0.0.0:6006 即可观训练曲线。4、测试阶段 测试阶段主要是直接通过加载图模型、读取参数等,然后直接通过tensorflow的相关函数,进⾏调⽤,⽽不需要⽹络架构相关的代码;通过内存feed_dict的⽅式,对相关的输⼊节点赋予相关的数据,进⾏前向传导,并获取相关的节点数值。 1. #coding=utf-82. import tensorflow as tf3. import os4. import cv25. 6. def load_model(session,netmodel_path,param_path):7. new_saver = tf.train.import_meta_graph(netmodel_path)8. new_saver.restore(session, param_path)9. x= tf.get_collection('test_images')[0]#在训练阶段需要调⽤tf.add_to_collection('test_images',test_images),保存之10. y = tf.get_collection(\"test_inf\")[0]11. batch_size = tf.get_collection(\"batch_size\")[0]12. return x,y,batch_size13. 14. def load_images(data_root):15. filename_queue = tf.train.string_input_producer(data_root)16. image_reader = tf.WholeFileReader()17. key,image_file = image_reader.read(filename_queue)18. image = tf.image.decode_jpeg(image_file)19. return image, key20. 21. def test(data_root=\"data/race/cropbrown\"):22. image_filenames=os.listdir(data_root)23. image_filenames=[(data_root+'/'+i) for i in image_filenames]24. 25. 26. #print cv2.imread(image_filenames[0]).shape27. #image,key=load_images(image_filenames)28. race_listsrc=['black','brown','white','yellow']29. with tf.Session() as session:30. coord = tf.train.Coordinator()31. threads = tf.train.start_queue_runners(coord=coord)32. 33. 34. 35. x,y,batch_size=load_model(session,os.path.join(\"model\36. os.path.join(\"model\37. predict_label=tf.cast(tf.argmax(y,1),tf.int32)38. print x.get_shape()39. for imgf in image_filenames:40. image=cv2.imread(imgf)41. image=cv2.resize(image,(76,76)).reshape((1,76,76,3))42. print \"cv shape:\43. 44. 45. #cv2.imshow(\"t\46. y_np=session.run(predict_label,feed_dict = {x:image, batch_size:1})47. print race_listsrc[y_np]48. 49. 50. coord.request_stop()#queue需要关闭,否则报错51. coord.join(threads) 4、移植阶段 (1)⼀个算法经过实验阶段后,接着就要进⼊移植商⽤,因此接着需要采⽤tensorflow的c api函数,直接进⾏预测推理,⾸先我们先把tensorflow编译成链接库,然后编写cmake,调⽤tensorflow链接库: 1. bazel build -c opt //tensorflow:libtensorflow.so2. 在bazel-bin/tensorflow⽬录下会⽣成libtensorflow.so⽂件5、C++ API调⽤、cmake 编写: 三、熟悉常⽤API1、LSTM使⽤ 1. import tensorflow.nn.rnn_cell2. 3. lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建⼀个lstm cell单元类,隐藏层神经元个数为lstm_size4. 5. state = tf.zeros([batch_size, lstm.state_size])#⼀个序列隐藏层的状态值6. 7. loss = 0.08. for current_batch_of_words in words_in_dataset:9. output, state = lstm(current_batch_of_words, state)#返回值为隐藏层神经元的输出10. logits = tf.matmul(output, softmax_w) + softmax_b#matmul矩阵点乘11. probabilities = tf.nn.softmax(logits)#softmax输出12. loss += loss_function(probabilities, target_words) 1、one-hot函数: 1. #ont hot 可以把训练数据的标签,直接转换成one_hot向量,⽤于交叉熵损失函数2. import tensorflow as tf3. a=tf.convert_to_tensor([[1],[2],[4]])4. b=tf.one_hot(a,5)>>b的值为 1. [[[ 0. 1. 0. 0. 0.]]2. 3. [[ 0. 0. 1. 0. 0.]]4. 5. [[ 0. 0. 0. 0. 1.]]] 2、assign_sub 1. import tensorflow as tf2. 3. x = tf.Variable(10, name=\"x\")4. sub=x.assign_sub(3)#如果直接采⽤x.assign_sub,那么可以看到x的值也会发⽣变化5. init_op=tf.initialize_all_variables()6. with tf.Session() as sess:7. sess.run(init_op)8. print sub.eval()9. print x.eval()可以看到输⼊sub=x=7 state_ops.assign_sub 采⽤state_ops的assign_sub也是同样sub=x=7 也就是说assign函数返回结果值的同时,变量本⾝的值也会被改变3、变量查看 1. #查看所有的变量2. for l in tf.all_variables():3. print l.name4、slice函数: 1. import cv22. import tensorflow as tf3. #slice 函数可以⽤于切割⼦矩形图⽚,参数矩形框的rect,begin=(minx,miny),size=(width,height)4. minx=205. miny=306. height=1007. width=2008. 9. image=tf.placeholder(dtype=tf.uint8,shape=(386,386,3))10. rect_image=tf.slice(image,(miny,minx,0),(height,width,-1))11. 12. 13. cvimage=cv2.imread(\"1.jpg\")14. cv2.imshow(\"cv2\15. 16. 17. with tf.Session() as sess:18. tfimage=sess.run([rect_image],{image:cvimage})19. cv2.imshow('tf',tfimage[0])20. cv2.waitKey() 5、正太分布随机初始化 tf.truncated_normal 6、打印操作运算在硬件设备信息 tf.ConfigProto(log_device_placement=True) 7、变量域名的reuse: 1. import tensorflow as tf2. with tf.variable_scope('foo'):#在没有启⽤reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量3. v=tf.get_variable('v',[1])4. with tf.variable_scope('foo',reuse=True):#如果启⽤了reuse,那么编译的时候,如果get_variable没有遇到⼀个已经创建的变量,是会出错的5. v1=tf.get_variable('v1',[1]) 8、allow_soft_placement的使⽤:allow_soft_placement=True,允许当在代码中指定tf.device设备,如果设备找不到,那么就采⽤默认的设备。如果该参数设置为false,当设备找不到的时候,会直接编译不通过。9、batch normalize调⽤: tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=self.epsilon, scale=True, scope=self.name)
因篇幅问题不能全部显示,请点此查看更多更全内容