华拓科技网
您的当前位置:首页BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】

BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】

来源:华拓科技网

1061: [Noi2008]志愿者招募

Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 3975  Solved: 2421
[][][]

Description

 

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

  仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。


 



 

很早之前就看过单纯形法了,(中午演讲时还讲过)

 

今晚重新看了一遍研究了一下实现

 

问题转化见下一篇吧 ,这里主要说一下单纯形法的实现问题

好吧现在已经第二天下午了......不是今晚

【理论罗列】:

1.标准型  

m个约束 n个变量用x向量表示 A是一个m*n的矩阵 c是一个n的向量 b是一个m的向量

最大化 cx

满足约束 Ax<=b x>0

2.松弛型

基本变量 B |B|=m 一个约束对应一个 表示松弛量 叫做松弛变量(基本变量)

非基变量 N |N|=n 

xn+i=bi-sigma{aijxj}>=0

3.替入变量 xe(非基变量)

   替出变量 xl(基本变量)

4.可行解

 基本解:所有非基变量设为0

 基本可行解

5.单纯形法的过程中B和N不断交换,在n维空间中不断走

“相当于不等式上的高斯消元”

 

【代码实现】:

pivot是转动操作

基本思想就是改写l这个约束为xe作为基本变量,然后把这个新xe的值带到其他约束和目标函数中,就消去xe了

改写和带入时要修改b和a 目标函数则是 c和v 

转动时l和e并没有像算法导论上一样a矩阵用了两行分别是a[l][]和a[e][](这样占用内存大),而是用了同一行,这样a矩阵的行数=|B|,列数=|N|

也就是说,约束条件只用m个,尽管B和N不断交换,但同一时间还是只有m个约束(基本变量)n个非基变量

注意改写成松弛型后a矩阵实际系数为负

(一个优化 a[i][e]为0的约束没必要带入了

simplex是主过程

基本思想是找到一个c[e]>0的,然后找对这个e最紧的l,转动这组l e

注意精度控制eps

c[e]>eps 

还有找l的时候a[i][e]>eps才行

 

【对偶原理】:

1.原始线性规划 对偶线性规划

2.对于

最大化 cx

满足约束 Ax<=b x>0

对偶问题为

最小化 bx

满足约束 ATx>=c x>0 (AT为A的转置)

可以转化很多问题来避免初始解不可行

 

【其他问题】:

1.一般不需要保存N和B集合

2.simplex过程依赖于线性规划是松弛型且初始解是可行的,我遇到的题目都是可行的

 否则的话参见算法导论

3.Q:本题中x向量一定是整数,这难道不是整数线性规划吗?

A:我也有点玄乎,也许是因为b向量也是整数吧,不过没道理啊整数线性规划对偶性不一定成立,可能是数据弱吧,还请神犇指教

[update 2017-03-01]感谢$myx12345$在评论中指出全幺模矩阵,然后去查了查,发现了$VFK$$orzorzorz$的贴吧的回复

 

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int M=10005,N=1005,INF=1e9;
const double eps=1e-6;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
    return x*f;
}

int n,m;
double a[M][N],b[M],c[N],v;
void pivot(int l,int e){
    b[l]/=a[l][e];
    for(int j=1;j<=n;j++) if(j!=e) a[l][j]/=a[l][e];
    a[l][e]=1/a[l][e];
    
    for(int i=1;i<=m;i++) if(i!=l&&fabs(a[i][e])>0){
        b[i]-=a[i][e]*b[l];
        for(int j=1;j<=n;j++) if(j!=e) a[i][j]-=a[i][e]*a[l][j];
        a[i][e]=-a[i][e]*a[l][e];
    }
    
    v+=c[e]*b[l];
    for(int j=1;j<=n;j++) if(j!=e) c[j]-=c[e]*a[l][j];
    c[e]=-c[e]*a[l][e];
    
    //swap(B[l],N[e])
}

double simplex(){
    while(true){
        int e=0,l=0;
        for(e=1;e<=n;e++) if(c[e]>eps) break;
        if(e==n+1) return v;
        double mn=INF;
        for(int i=1;i<=m;i++)
            if(a[i][e]>eps&&mn>b[i]/a[i][e]) mn=b[i]/a[i][e],l=i;
        if(mn==INF) return INF;//unbounded
        pivot(l,e);
    }
}

int main(){
    n=read();m=read();
    for(int i=1;i<=n;i++) c[i]=read();
    for(int i=1;i<=m;i++){
        int s=read(),t=read();
        for(int j=s;j<=t;j++) a[i][j]=1;
        b[i]=read();
    }
    printf("%d",(int)(simplex()+0.5));
}

 

 

 

 

因篇幅问题不能全部显示,请点此查看更多更全内容